首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
The present study investigates the synthesis and effectiveness of gold/gelatin nanoparticles (NPs) biopolymer as a carrier for methotrexate (MTX) drug. Two different shapes of gold particles, including spherical AuNPs (50 & 100 nm) and gold nanorods (AuNRs) with three different sizes (20, 50 and 100 nm length) were synthesized using the chemical reduction method. The effect of AuNPs size and shape on the entrapment efficiency (E.E), the release rate of the drug, and cellular uptake were investigated. The surfaces of both AuNPs and AuNRs were coated with a gelatin biopolymer, and the stability and property of the generated compounds were studied. Moreover, MTX as a chemotherapeutic agent was loaded on the gelatin-coated AuNPs/AuNRs complexes. The physicochemical properties of the gelatin-coated AuNPs/AuNRs complexes were studied using ultraviolet-visible (UV–Vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. The E.E and MTX release behavior from the complexes at pH values of 7.4 and 5.4 and temperatures of 37 and 40 °C were investigated in vitro. The cytotoxic effects of AuNPs, AuNPs-Gelatin, AuNPs-Gelatin-MTX, AuNRs, AuNRs-Gelatin, AuNRs-Gelatin-MTX and free MTX were studied. The results indicated that the E.E of AuNPs was higher than that of AuNRs. The highest release rate of the drug was related to the AuNR1-gelatin complex (pH 5.4 and temperature of 40 °C). In addition, MTX loaded AuNR2-gelatin showed the highest cytotoxic effect on the MCF-7 breast cancer cell line so that even its cell cytotoxicity was more than that of the free drug.  相似文献   

2.
In present paper, an in vivo study was carried out on uncoated and calcium-deficient hydroxyapatite (Ca-def HA) coated Mg-Zn-Ca alloy to investigate the effect of Ca-def HA coating on the degradation behavior and bone response of magnesium substrate. Magnesium alloy rods were implanted into rabbit femora and evaluated during 24 weeks implantation. The characterization of both implants indicates that in vivo degradation of the Ca-def HA coating and magnesium substrate occurs almost simultaneously, and in vivo valid life of the coating is about 8 weeks, after that the degradation rate of the coated implants increases obviously. The main reasons for the Ca-def HA coating degradation can be attributed to its reaction with body fluid and the substitution of Mg2+ ions in Ca-def HA. Histopathological examinations show that the Ca-def HA coating has good osteoconductivity and is in favor of the formation of more new bone on the surface of magnesium alloy. So the Ca-def HA coating could not only slow down in vivo degradation of magnesium alloy but also improve its bone response.  相似文献   

3.
Recently, the production of nanoparticles using biological resources has gained considerable attention due to their application for animal and human well-being. In this study, we used a green synthesis to fabricate gold and silver nanoparticles by reducing HAuCl4 and AgNO3 into AuNPs and AgNPs, respectively, using Dudleya brittonii (DB) extract. The physio-chemical properties of the synthesized nanoparticles were analyzed using a UV–vis spectrophotometer, FESEM, EDX, HR-TEM, AFM and FT-IR. Furthermore, the antimicrobial and cytotoxicity activities of DB-AuNPs and DB-AgNPs against livestock pathogenic bacteria and different cell lines, as well as anti-oxidant activity, were investigated. DB synthesized AuNPs and AgNPs were mostly spherical with a few triangular rods and sizes ranging of 5–25 nm and 10–40 nm, respectively. The in vitro antibacterial and antifungal studies demonstrated the DB-AuNPs and DB-AgNPs have good antibacterial activity against E. coli and other livestock pathogens, including Y. pseudotuberculosis and S. typhi. Cell studies revealed that the higher concentrations of both DB-AuNPs and DB-AgNPs (1 µg/ml to 1 mg/ml) showed potent cytotoxicity in chicken cells after 24 hrs, whereas the middle and lower concentrations of DB-AuNPs and DB-AgNPs did not show cytotoxicity in selected cell lines after 24 hrs. In addition, the DB synthesized AuNPs and AgNPs exhibited good free scavenging activity in a dose-dependent manner. Therefore, the biosynthesized nanoparticles can be utilized by the livestock industry to develop an effective source against livestock microbial infections.  相似文献   

4.
A novel pleuromutilin derivative, 22-(4-(2-(4-nitrophenyl-piperazin-1-yl)-acetyl)-piperazin-1-yl)-22-deoxypleuromutilin (NPDM), was synthesized in our laboratory and proved excellent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). In this study, more methods were used to further study its preliminary pharmacological effect. The antibacterial efficacy and toxicity of NPDM were evaluated using tiamulin as the reference drug. The in vitro antibacterial activity study showed that NPDM is a potent bactericidal agent against MRSA that induced time-dependent growth inhibition and a concentration-dependent post-antibiotic effect (PAE). Toxicity determination showed that the cytotoxicity of NPDM was slightly higher than that of tiamulin, but the acute oral toxicity study proved that NPDM was a low-toxic compound. In an in vivo antibacterial effect study, NPDM exhibited a better therapeutic effect than tiamulin against MRSA in a mouse thigh infection model as well as a mouse systemic infection model with neutropenia. The 50% effective dose (ED50) of NPDM in a Galleria mellonella infection model was 50.53 mg/kg. The pharmacokinetic properties of NPDM were also measured, which showed that NPDM was a rapid elimination drug in mice.  相似文献   

5.
For thousands of years Pueraria thomsonii Benth has been used to treat a number of diseases in traditional Chinese pharmacopeia. Despite these uses, there is still insufficient information on its biological activity and chemical composition. In this respect, the in vitro callus culture of P. thomsonii was subjected to identify anticancer and antibacterial compounds. Based on significant preliminary cytotoxicity and antibacterial activities; the chemical investigation led to the isolation of isoflavonoids, coumaric acid derivative and dihydroxyflavanone-type of compounds viz., daidzin (1), puerarin (2), biochanin A (3), daidzein (4), p-coumaric acid ethyl ester (5) and liquiritigenin (6), respectively. These compounds were tested for their cytotoxicity and antibacterial activities. Among them, p-coumaric acid ethyl ester (5) exhibited significant cytotoxicity with GI50 values of 14.73, 15.64 and 20.88 μM/mL against 4T1, NC1-H1975 and A549, respectively; the other isoflavones and aflavonoid showed moderate to weak activities. Moreover, p-coumaric acid ethyl ester (5) inhibited the growth of K. pneumonia, MRSE and MRSA at very low MIC values of 6.01, 12.01 µg/mL 24.02, respectively. On the other hand compounds biochanin A (3) and liquiritigenin (6) showed moderate antibacterial activity. Because of the potential anticancer and antibacterial activities of bioactive compounds from P. thomsonii, they can be used to treat various cancer and emerging bacterial infections.  相似文献   

6.
Recently, chemical interface damping (CID) has been proposed as a new plasmon damping pathway based on interfacial hot-electron transfer from metal to adsorbate molecules. It has been considered essential, owing to its potential implications in efficient photochemical processes and sensing experiments. However, thus far, studies focusing on controlling CID in single gold nanoparticles have been very limited, and in situ reversible tuning has remained a considerable challenge. In these scanning electron microscopy-correlated dark-field spectroscopic measurements and density functional theory calculations, cucurbit[7]uril (CB[7])-based host–guest supramolecular interactions were employed to examine and control the CID process using monoamine-functionalized CB[7] (CB[7]-NH2) attached to single gold nanorods (AuNRs). In situ tuning of CID through the CB[7]–oxaliplatin complexation, which can result in the variation of the chemical nature and electronic properties of adsorbates, was presented. In addition, in situ tuning of CID was demonstrated through the competitive release of the oxaliplatin guest from the oxaliplatin@CB[7] complex, which was then replaced by a competitor guest of spermine in sufficient amounts. Furthermore, nuclear magnetic resonance experiments confirmed that the release of the guest is the consequence of adding salt (NaCl). Thus, in situ reversible tuning of CID in single AuNRs was achieved through successive steps of encapsulation and release of the guest on the same AuNR in a flow cell. Finally, single CB[7]-NH2@AuNRs were presented as a recyclable platform for CID investigations after the complete release of guest molecules from their host–guest inclusion complexes. Therefore, this study has paved a new route to achieve in situ reversible tuning of CID in the same AuNR and to investigate the CID process using CB-based host–guest chemistry with various guest molecules in single AuNRs for efficient hot-electron photochemistry and biosensing applications.

This study has paved a new route to achieve in situ reversible tuning of chemical interface damping (CID) in the same gold nanorod (AuNR) and to investigate the CID process using cucurbituril (CB)-based host–guest chemistry with various guest molecules in single AuNRs.  相似文献   

7.
Magnesium matrix composites reinforced by calcium phosphate could not show the desired effect on the magnesium breakdown rate. Rapid disintegration rate limited the magnesium alloys used as biodegradable implant material. The rate of degradation can be minimized and biological activity can be improved in the magnesium alloy by Hydroxyapatite (HA) coating with the improvement of bone induction and conduction abilities. Various alkali post-treatment and conversion coating methods are applied to deposit HA coatings and biocompatible dicalcium phosphate dihydrate (DCPD) on magnesium alloy so that corrosion resistance and surface biocompatibility can be improved to be used in bone tissue engineering applications. Magnesium's corrosion resistance will weaken its antibacterial properties, which are linked to and proportional to the alkaline pH at the time of breakdown. The goal of this study is to bring together and compare contemporary research on different coatings on magnesium and related alloys in relation to antibacterial functionalized activities. A though review has been performed on in vivo and in vitro cytocompatibility, material property, corrosion resistance, and antibacterial properties of the coatings. Increased degradation behavior, biocompatibility, and bioactivity have been achieved following multiple procedures such as alkali treatment with HA electrochemical deposition on magnesium alloy. Multifunctional coatings can make safe and bioactive magnesium alloy surfaces for biodegradable implant applications.  相似文献   

8.
In this work, nano-structured scaffolds were designed for tissue engineering using collagen, hyaluronic acid (HA) and nano-bioactive glass (NBAG) as their main components. The scaffold was prepared via freeze-drying method and the properties including morphology, porosity, compressive strength, swelling ratio and cytotoxicity in-vitro, were also evaluated. The composite scaffolds showed well interconnected macropores with the pore size of ranging from 100 to 500 μm. The porosity percent and swelling ability were decreased with the introduction of NBAG into the collagen/HA hydrogel; however, the compressive strength was enhanced. The cytotoxicity in-vitro study shows that the collagen-HA/NBAG scaffolds have good biocompatibility with improving effect on fibroblastic cells growth. It could be concluded that this scaffold fulfills the main requirements to be considered as a bone substitute.  相似文献   

9.
The four divalent nickel complexes having α-ketoglutaric acid (H2A) and 1-(o-tolyl)biguanide (TB) ligands have been synthesized, characterized, and tested for antibacterial and antitumor activity.The proposed formulas for these complexes are [Ni(TB)(HA)(H2O)2]Cl (C1), [Ni(TB)(HA)(H2O)2]Br (C2), [Ni(TB)(HA)]NO3·H2O (C3), and [Ni(TB)(HA)]CH3COO (C4), where HA represents deprotonated H2A.For the four complexes and for the ligands used in the synthesis, the antibacterial activity against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853 and antitumor activity in HeLa tumor cells were tested. A moderate cytotoxic effect of C3 and C4 complexes has been observed on the development and metabolic activity of HeLa cells, whereas C1 and C2 ligands have a very low effect on them.The synthesized complexes (obtained) inhibit adherence to the inert substrate of bacterial strains S. aureus and P. aeruginosa; therefore, they may be candidates for (potential) therapeutic applications.  相似文献   

10.
The synthesis, in vitro and in vivo evaluation of novel melphalan-bisphosphonate hybrids, with a tumor microenvironment sensitive linkage were described.  相似文献   

11.
A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC50) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC50 values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC50 concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC50. Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPhA causing cell-cycle arrest. This study demonstrates a new approach to comprehensive testing of chemical toxicity.  相似文献   

12.
采用冷冻干燥法合成了介孔羟基磷灰石(HA)/壳聚糖(CS)-万古霉素(VCM)药物释放系统复合材料, 利用SEM, XRD和FTIR等方法对材料进行了表征. 结果证实CS与HA混合复合材料具有良好的孔径和孔隙率, 万古霉素吸附于复合材料的表面和内部. 细胞毒性实验[噻唑蓝(MTT)比色法]结果表明, 材料可以促进成骨细胞增殖且具有良好的细胞相容性. 体外抑菌实验结果证实此材料可长时间抑制耐甲氧西林金葡菌(MRSA)的生长, 具有良好的抑菌和杀菌能力. 细胞黏附实验结果表明, 成骨细胞附着于材料表面增殖并通过孔道延伸. 实时聚合酶链式反应(RT-PCR)实验结果表明, 在成骨相关标志产物胶原蛋白-1(COL-1)及骨形态发生蛋白-2(BMP-2)基因上均有较高的表达, 表明材料在体外可以促进成骨细胞生长, 具有良好的成骨能力.  相似文献   

13.
《中国化学快报》2020,31(9):2447-2451
Facile achievement of gold nanorods (AuNRs) with controllable longitudinal surface plasmon resonance (LSPR) is of great importance for their applications in various fields. The LSPR of AuNRs is sensitive to their aspect ratio, which is still hard to be precisely tuned by direct synthesis. In this work, we report a simple approach for end-selective etching of AuNRs by a rapid oxidation process with Au(III) in cetyltrimethylammonium bromide (CTAB) solution at a mild temperature. The LSPR wavelength and the length of AuNRs blue shifted linearly as a function of the amount of Au(III), while the diameter of AuNRs remained nearly constant. The oxidative rate is temperature dependent, and the oxidative process for a desired LSPR can be accomplished within 15 min at 60 °C. Further investigations indicated that Br determine the occurrence of the oxidation between AuNRs and Au(III), and a small amount of surfactant chain (CTA+) is crucial for stabilizing AuNRs. This method presents a quick but robust strategy for acquiring AuNRs with an arbitrary intermediate LSPR wavelength using the same starting AuNRs, and can be a powerful tool for subsequent applications.  相似文献   

14.
Gold nanorods (AuNRs) integrated with ZnCdHgSe near-infrared quantum dots (AuNRs-ZnCdHgSe QDs) were successfully synthesized and characterized by transmission electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. A glassy carbon electrode was decorated with the aforementioned AuNRs-ZnCdHgSe QDs nanocomposite, which provides a biocompatible interface for the subsequent immobilization of prostate specific antibody (anti-PSA). After being successively treated with glutaraldehyde vapor and bovine serum albumin solution, a photoelectrochemical immunosensing platform based on anti-PSA/AuNRs-ZnCdHgSe QDs/GCE was established. The photocurrent response of ZnCdHgSe QDs was tremendously improved by AuNRs due to the effect of resonance energy transfer which can be deduced from the dependence of the enhanced efficiency on the AuNRs with different length-to-diameter ratios and spectral absorption characteristics. A maximum photocurrent was obtained when the absorption spectrum of AuNRs matched well with the emission spectrum of ZnCdHgSe QDs. A photoelectrochemical immunosensor for prostate specific antigen (PSA) was achieved by monitoring the photocurrent variation. The photocurrent variation before and after being interacted with PSA solution exhibits a good linear relationship with the logarithm of its concentration (logcPSA) in the range from 1.0 pg mL−1 to 50.0 ng mL−1. The detection limit of this photoelectrochemical immunosensor is able to reach 0.1 pg mL−1 (S/N = 3). Determining PSA in clinical human serum was also demonstrated by using the developed anti-PSA(BSA)/AuNRs-ZnCdHgSe QDs/GCE electrode. The results were comparable with those obtained from an enzyme-linked immunosorbent assay method.  相似文献   

15.
Although gold nanorods (AuNRs) have strong potential applications in nanotechnology, plasmonics, and sensing, the scale-up synthesis of isolated AuNRs in gram quantities remains a challenge. Nearly all previously reported methods produce aqueous solutions of cetyltrimethylammonium bromide (CTAB)-coated AuNRs in milligram quantities with yields of approximately 20–30 % in terms of AuI to Au0 conversion. In addition, it is difficult to remove the CTAB bilayer from the surface of AuNRs and yet make them soluble and functionalized for further processing and chemical modification. This report describes the synthesis of monodisperse functionalized AuNRs (standard deviation, σ≈5 %) in gram quantities. Our approach involved increasing the concentration of HAuCl4 ⋅ 3 H2O in the growth solution to produce larger quantities of starting AuNRs and further reducing the remaining AuI ions onto the surface of AuNRs. The slow and controlled addition of ascorbic acid as a reducing agent continued the conversion of AuI into Au0 (through a disproportionation reaction) onto the surface of the nanorods, which maintained their uniform morphology without creating any unwanted impurities of various shapes. In addition, this approach significantly narrowed the size distribution owing to continuous growth of the partially grown AuNRs during the initial stage of the synthesis. To isolate a 1 g quantity of the AuNRs and to make them functionalized for further chemical reactions, a ligand-exchange approach was utilized, in which the CTAB surfactant was replaced with 4-mercaptophenol. The thiol group from 4-mercaptophenol formed a covalent bond with the surface of the AuNRs, leaving free functional OH groups available for further chemical coupling reactions. For the ligand-exchange process, a concentrated solution of 4-mercaptophenol in tetrahydrofuran solution was introduced into the AuNRs solution. Pure AuNRs functionalized with 4-mercaptophenol were isolated by dispersion and rinsing with an excess amount of THF, followed by centrifugation.  相似文献   

16.
Multidrug resistant bacteria create a challenging situation for society to treat infections. Multidrug resistance (MDR) is the reason for biofilm bacteria to cause chronic infection. Plant-based nanoparticles could be an alternative solution as potential drug candidates against these MDR bacteria, as many plants are well known for their antimicrobial activity against pathogenic microorganisms. Spondias mombin is a traditional plant which has already been used for medicinal purposes as every part of this plant has been proven to have its own medicinal values. In this research, the S. mombin extract was used to synthesise AgNPs. The synthesized AgNPs were characterized and further tested for their antibacterial, reactive oxygen species and cytotoxicity properties. The characterization results showed the synthesized AgNPs to be between 8 to 50 nm with -11.52 of zeta potential value. The existence of the silver element in the AgNPs was confirmed with the peaks obtained in the EDX spectrometry. Significant antibacterial activity was observed against selected biofilm-forming pathogenic bacteria. The cytotoxicity study with A. salina revealed the LC50 of synthesized AgNPs was at 0.81 mg/mL. Based on the ROS quantification, it was suggested that the ROS production, due to the interaction of AgNP with different bacterial cells, causes structural changes of the cell. This proves that the synthesized AgNPs could be an effective drug against multidrug resistant bacteria.  相似文献   

17.
In the current study a new biodegradable nanocomposite based on poly hexamethylene carbonate fumarate (PHMCF) and nano‐sized hydroxyapatite (nano‐HA) has been developed. A silane coupling agent γ‐methacryloxypropyltrimethoxy silane, was used to achieve a good interfacial adhesion between nano‐HA and PHMCF matrix. PHMCF with different nano‐HA contents were characterized using dynamical mechanical thermal analysis (DMTA) and hardness test. The effect of frequency on storage modulus, glass transition temperature (Tg) and the damping were investigated. In vitro cytotoxicity and proliferation were performed using G292 cell lines by MTT assay. The addition of nano‐HA resulted in an increment on the storage modulus and decrement on the damping. Along with improvement in mechanical properties of composites, the addition of nano‐HA resulted in enhanced cell proliferation. Following these results, the newly developed nano‐PHMCF composite scaffold may be considered for bone tissue engineering applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
《Tetrahedron》2019,75(25):3463-3471
Six new compounds, named conoideoglucosides A − C and conoideochromanes A − C, together with eight known compounds, including eutypinic acid, 2,2-dimethyl-2H-1-chromene-6-carboxylic acid, (−)-luteoskyrin, (−)-4a-oxyluteoskyrin, chrysophanol, islandicin, catenarin, and (22E)-5α,8α-epidioxyergosta-6,22-dien-3β-ol were isolated from the insect fungus Conoideocrella krungchingensis BCC53666. (−)-Luteoskyrin exhibited a broad range of antimicrobial activity such as antimalarial (IC50 0.51 μg/mL), antitubercular (MIC 6.25 μg/mL), antibacterial (both Gram positive; MIC 0.39–1.56 μg/mL and Gram negative; MIC 3.13–12.50 μg/mL), and antifungal (against various plant pathogens; MIC 3.13–50.00 μg/mL) activities, while (−)-4a-oxyluteoskyrin and catenarin showed weaker antibacterial activity. Moreover, eutypinic acid, (−)-luteoskyrin, (−)-4a-oxyluteoskyrin, and catenarin showed cytotoxicity against NCI-H187 cells with IC50 in a range of 0.16–17.99 μg/mL, while eutypinic acid and catenarin had no cytotoxicity against non-cancerous (Vero) cells at maximum tested concentration (50 μg/mL). The complete NMR spectral data and biological activity of the known (−)-4a-oxyluteoskyrin was also reported for the first time.  相似文献   

19.
Due to their potential renewable materials-based tissue engineering scaffolds has gained more attention. Therefore, researchers are looking for new materials to be used as a scaffold. In this study, we have focused on the development of a nanocomposite scaffold for bone tissue engineering (using bacterial cellulose (BC) and β-glucan (β-G)) via free radical polymerization and freeze-drying technique. Hydroxyapatite nanoparticles (n-HAp) and graphene oxide (GO) were added as reinforcement materials. The structural changes, surface morphology, porosity, and mechanical properties were investigated through spectroscopic and analytical techniques like Fourier transformation infrared (FT-IR), scanning electron microscope (SEM), Brunauer–Emmett-Teller (BET), and universal testing machine Instron. The scaffolds showed remarkable stability, aqueous degradation, spongy morphology, porosity, and mechanical properties. Antibacterial activities were performed against gram -ive and gram + ive bacterial strains. The BgC-1.4 scaffold was found more antibacterial compared to BgC-1.3, BgC-1.2, and BgC-1.1. The cell culture and cytotoxicity were evaluated using the MC3T3-E1 cell line. More cell growth was observed onto BgC-1.4 due to its uniform interrelated pores distribution, surface roughness, better mechanical properties, considerable biochemical affinity towards cell adhesion, proliferation, and biocompatibility. These nanocomposite scaffolds can be potential biomaterials for fractured bones in orthopedic tissue engineering.  相似文献   

20.
氟化修饰显著提高碳点的抗菌活性   总被引:1,自引:0,他引:1  
郁静雯  吕佳  程义云 《化学通报》2020,83(4):360-368
本文采用支化聚乙烯亚胺和乙醇制备阳离子碳点,并在其表面接枝含氟烷基链,得到一种氟化修饰的碳点材料,其对革兰氏阳性菌金黄色葡萄球菌以及革兰氏阴性菌大肠杆菌和绿脓杆菌都表现出了优异的抗菌活性,而对哺乳动物细胞具有较低的毒性。通过构效关系研究发现,氟化修饰对于碳点的抗菌活性至关重要,将含氟烷基链替换成烷烃基链会极大削弱碳点的抗菌性能。本文的结果为阳离子抗菌材料的设计提供了新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号