首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report a photochemical and kinetic study of the thermal relaxation reaction of a double azobenzene system, in which two azobenzene photochromic units are connected via a phenyl ring. Upon UV irradiation, three thermally unstable isomers are formed. Kinetic studies using arrayed (1)H-NMR spectroscopy revealed four distinct barriers for the thermal reversion to the stable isomer. The double isomerised Z,Z-2 can revert thermally to the E,E-2 isomer via either of two isomerisation pathways. The thermal Z to E isomerisations are not significantly affected by the state of the neighbouring azo-switching unit in the meta position. These findings are supported by quantum chemical calculations on the thermal Z to E isomerisation.  相似文献   

2.
A numerical method is proposed for the kinetic analysis of the experimental absorbance vs. time curves obtained during continuous irradiation and thermal equilibration of a thermoreversible photochromic system with degradation. The quantum yield amd molar absorption coefficients of the unstable coloured species can be determined simultaneously using a kinetic model which encompasses all details of the reaction mechanism including the degradation process. The efficacy and accuracy of this method are illustrated by an analysis of the triphenylimidazolyl dimer (TPID) system in toluene solution.  相似文献   

3.
Photochromic systems with an ultrahigh rate of thermal relaxation are highly desirable for the development of new efficient photochromic oscillators. Based on DFT calculations, we designed a series of 5‐phenylazopyrimidines with strong push–pull character in silico and observed very low energy barriers for the thermal (Z)‐to‐(E) isomerization. The structure of the (Z)‐isomer of the slowest isomerizing derivative in the series was confirmed by NMR analysis with in situ irradiation at low temperature. The substituents can tune the lifetime of thermal back isomerization from hundreds of microseconds to several nanoseconds (8 orders of magnitude). The photoswitching parameters were extracted from transient absorption techniques and a dominant rotation mechanism of the (Z)‐to‐(E) thermal fading was proposed based on DFT calculations.  相似文献   

4.
Photochromic systems with an ultrahigh rate of thermal relaxation are highly desirable for the development of new efficient photochromic oscillators. Based on DFT calculations, we designed a series of 5-phenylazopyrimidines with strong push–pull character in silico and observed very low energy barriers for the thermal (Z)-to-(E) isomerization. The structure of the (Z)-isomer of the slowest isomerizing derivative in the series was confirmed by NMR analysis with in situ irradiation at low temperature. The substituents can tune the lifetime of thermal back isomerization from hundreds of microseconds to several nanoseconds (8 orders of magnitude). The photoswitching parameters were extracted from transient absorption techniques and a dominant rotation mechanism of the (Z)-to-(E) thermal fading was proposed based on DFT calculations.  相似文献   

5.
In this work, photochromic materials based on the dihydroindolizine (DHI) system were synthesized in multistep reactions using chemical and photochemical methods. Some of the synthesized photochromic dihydroindolizine derivatives were substituted on the fluorene (region A) and pyridazine (region C) moieties in order to provide the appropriate functionality for optimal tuning of the photochromic properties of the system. Irradiation of the photochromic DHIs with polychromatic light led to ring opened colored betaines, which underwent thermal 1,5-electrocyclization. The red to green colored betaines produced after UV irradiation returned back through 1,5-electrocyclization to the corresponding DHIs with different rate constants depending on the substituents in both fluorene and pyridazine regions. The kinetic measurements of the thermal 1,5-electrocyclization under different temperatures that ranged from −10 to 25 °C showed that the half-lives of the colored betaines fall in the second to hours domain. Interestingly, these materials showed a very good photochromic behavior not only in solution but also in the PMMA matrix. Irradiation of a slide prepared by the deep-coating method led to the formation of the colored betaine and the kinetics of the thermally reversible 1,5-electrocyclization and the AFM image of the film has been recorded. Indeed, the chemical and thermal stability of the investigated betaines in polymer (PMMA) will render such species useful for a plethora of new of applications.  相似文献   

6.
The kinetic and structural behavior of a photochromic compound, 3-(2-fluorophenyl)-3-phenyl-3H-naphtho[2,1-b]pyran (F-Py), was investigated using 1H and 19F nuclear magnetic resonance (NMR) spectroscopy. Upon irradiation, the four theoretically predicted photomerocyanines appear along with a fifth form X, whose final structure has not been elucidated. This last form and two of the photomerocyanines are thermally labile, whereas the other two do not show any signs of decay. The system has been analyzed by NMR spectroscopy. This led to the structural assignment of each photomerocyanine. The kinetics of the thermal bleaching were monitored by directly and separately measuring the concentrations of each species at regular time intervals using 19F NMR spectroscopy. We therefore propose a plausible reaction mechanism. On the basis of this mechanism, the mathematical treatment and the study of the effects of temperature led to the determination of the kinetic and thermodynamic parameters (rate coefficients, enthalpy and entropy of activation) of this photochromic system. The leading role of the labile intermediate X on the formation of trans-transoid-cis (TTC) and cis-transoid-cis (CTC) photomerocyanines is pointed out.  相似文献   

7.
Specifically angled, conjugated spiroindolinonaphthooxazine dimers (SNOD) have been synthesized. The photochromic reactions of two types of SNOD were studied under continuous UV irradiation in solvents of different polarity. Comparison of these results with the single unit provides the examination of the specific effect of substituents on their photochromic properties and relaxation kinetics. The photomerocyanine isomers showed positive solvatochromism, supporting the premise for a less polar quinoidal structure. The thermal closing rate at 25 °C ranged from 0.2 to 1.6 s−1 depending on the compound and solvent. Photochromism of these new compounds showed little dependency on solvent polarity and stable cyclability.  相似文献   

8.
Stimuli responsive liquid crystalline polymers are a unique class of so-called “smart” materials demonstrating various types of mesomorphic structures easily controlled by external fields, including light. In the present work we synthesized and studied a comb-shaped hydrazone-containing copolyacrylate exhibited cholesteric liquid crystalline properties with the pitch length of the helix being tuned under irradiation with light. In the cholesteric phase selective light reflection in the near IR spectral range (1650 nm) was measured and a large blue shift of the reflection peak from 1650 nm to 500 nm was found under blue light (428 or 457 nm) irradiation. This shift is related to the Z-E isomerization of photochromic hydrazone-containing groups and it is photochemically reversible. The improved and faster photo-optical response was found after copolymer doping with 10 wt % of low-molar-mass liquid crystal. It is noteworthy that both, the E and Z isomers of hydrazone photochromic group are thermally stable that enable to achieve a pure photoinduced switch without any dark relaxation at any temperatures. The large photoinduced shift of the selective light reflection, together with thermal bistability, makes such systems promising for applications in photonics.  相似文献   

9.
We show photorheology in aqueous solutions of weakly entangled wormlike micelles prepared with cetyltrimethylammonium bromide (CTAB), salicylic acid (HSal), and dilute amounts of the photochromic multistate compound trans-2,4,4'-trihydroxychalcone (Ct). Different chemical species of Ct are associated with different colorations and propensities to reside within or outside CTAB micelles. A light-induced transfer between the intra- and intermicellar space is used to alter the mean length of wormlike micelles and hence the rheological properties of the fluid, studied in steady-state shear flow and in dynamic rheological measurements. Light-induced changes of fluid rheology are reversible by a thermal relaxation process, at relaxation rates which depend on pH and which are consistent with photochromic reversion rates measured by UV-vis absorption spectroscopy. Parameterizing viscoelastic rheological states by their effective relaxation time τ(c) and corresponding response modulus G(c), we find the light and dark states of the system to fall onto a characteristic state curve defined by comparable experiments conducted without photosensitive components. These reference experiments were prepared with the same concentration of CTAB, but different concentrations of HSal or sodium salicylate (NaSal), and tested at different temperatures.  相似文献   

10.
The photochromic [2.2]paracyclophane-bridged imidazole dimers show instantaneous coloration upon exposure to UV light and rapid fading in the dark. A new [2.2]paracyclophane-bridged imidazole dimer, pseudogem-PPI-DPI[2.2]PC, with high photosensitivity to UVA radiation was developed. To enhance the photosensitivity, we introduced pyrenyl moieties to the [2.2]paracyclophane-bridged imidazole dimer. The localized π-π* transition of pyrenyl moieties appears in the UVA radiation region by introducing a pyrenyl moietiy on the 4-position of the imidazole rings. The expansion of the π-electron system also affects the absorption spectrum of the colored species. The broad absorption band of the colored species covers the whole range of visible light region and its absorbance is approximately equal throughout the visible light region. Thus, pseudogem-PPI-DPI[2.2]PC shows the photochromic reaction coloring black upon light irradiation and successive fast thermal bleaching following the monoexponential kinetics with a time constant of 12 ms at room temperature.  相似文献   

11.
The spectral and kinetic parameters of transient species generated in the irradiation of 6-ethoxy-2,2,4-trimethyl-8-nitro-1,2-dihydroquinoline were examined by stationary and pulse photolysis in the solvents: heptane, acetonitrile, methanol, and ethanol. Upon excitation of the long-wavelength absorption band (λex > 450 nm), a reversible photochemical reaction was revealed, and the spectral and kinetic parameters of three transient species observed in the photolysis were characterized (λmax = 390, 400, and 420 nm (acetonitrile), k = 97, 500, and 2000 s−1, respectively). The absorption spectra and the rate constants of the decay of transient species are almost independent of the medium polarity and the presence of oxygen in the system. The excited state generated during irradiation to the short-wavelength absorption band (290 < λex < 350 nm) is inactive in the photochemical reaction and deactivates without the formation of transient species. The mechanism of the reversible photochemical reaction is suggested, which involves the opening of the heterocycle N-C bond upon photoexcitation of the long-wavelength absorption band and the thermal back reaction.  相似文献   

12.
Two novel helical naphthopyrans have been synthesised. The helical scaffold has the interesting effect of increasing the thermal stability of the transoidtrans (TT) open isomer formed upon UV irradiation of the closed form (CF), which transforms these naphthopyrans from thermal to photochemical photochromes. The photochromic performance is excellent in both polar and apolar solvents and the conversion percentage from the CF to the TT form can be as high as 92.8 %. We propose a new method to determine the quantum yields of the photochemical processes that lead to transoidcis (TC) and TT isomers, and their molar absorption coefficients. The thermal stability of the TT and TC isomers has been studied in different solvents. The quantum yields of fluorescence before and after irradiation, along with the decay lifetimes, have also been measured. TD‐DFT calculations have been performed to determine the relative thermodynamic stability of the species involved in the photochromic mechanism and to rationalise their spectral properties.  相似文献   

13.
The photochromic behavior of 2,2-di(4-fluorophenyl)-6-methoxy-2H-1-chromene has been investigated by 19F NMR spectroscopy. Photocoloration under UV irradiation at low temperature led to the formation of three interconverting photoisomers including two merocyanines and an unprecedented allenyl-phenol isomer. Photobleaching with visible light, which was known to lead to reversion to the initial closed chromene, was shown to increase allenyl-phenol concentration. Thermal relaxation of the preirradiated system was also studied at various temperatures. In each case (UV and visible irradiations, thermal isomerization), the kinetics of each of the four species was monitored. Numerical analysis of concentration vs time profiles enabled us to unequivocally establish the global mechanism occurring in each of the experimental conditions and to interpret the specific reactivity of each photoisomer. It has been shown that, among the 12 possible isomerization processes, only some paths were active. For the first time, it has been possible to determine their corresponding thermal activation parameters and photochemical quantum yield ratios.  相似文献   

14.
A new formalism allowing solution of the differential equations for kinetic systems comprising three species (ABC) linked by first‐order thermal and/or photochemical reactions is proposed. The approach is developed specifically with photochromic materials in mind, but the formalism developed is shown to be applicable to a variety of kinetic systems irradiated with monochromatic light where the photokinetic factor ( F ) is constant. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 162–174, 2005  相似文献   

15.
The synthesis of three new benzopyranocarbazoles (=[indole]naphthopyrans) from hydroxybenzo[a]carbazoles is described. The photochromic properties of these novel compounds were investigated under flash photolysis and continuous irradiation. Compared to known [indole]benzopyrans these new compounds showed a significant bathochromic shift in the spectra of the open forms, an increase in colourabilities and slower ring closure kinetics. The photochromic behaviour of compound 4 has been further investigated. Continuous near-UV irradiation led to the formation of one photoisomer (TC) that was subsequently partially converted, to the other (TT). Thermal reversion of the preirradiated system to the original form was only partial and followed a monoexponential decay involving the back-conversion of the TC-isomer to the uncoloured closed form (CF). The thermally stable TT-isomer could only be photobleached with visible light. This process was shown to proceed through a fast photoconversion TT→TC followed by the thermal path TC→CF. Thermal relaxation of the activated system was also studied at various temperatures.  相似文献   

16.
Eight new photochromic dihydro 5-azaindolizine-linker-conjugates with a terminal ethylene anchoring group have been synthesized via palladium-catalyzed Negishi coupling. Polychromatic light irradiation of the photochromic dihydro 5-azaindolizines (DHAIs) led to ring-opened colored betaines which underwent reversible thermal 1,5-electrocyclization into their corresponding DHAIs in the second domain. The noteworthy multiaddressable photochromic properties are useful for a plethora of new applications for these materials such as anchoring the ethylene group to metal-oxide nanoparticles.  相似文献   

17.
We report herein a dramatic improvement in the kinetics and efficiency of an oxidative cycloreversion reaction of photochromic dithiazolylthiazoles. The cycloreversion reaction of a colored isomer of dithiazolylthiazole proceeds not only by photo‐irradiation, but also through chemical oxidation with a net efficiency far exceeding 100 % owing to a chain reaction mechanism. By introducing aromatic groups on the reactive carbon atoms at the ends of a photoreactive 6π system in a dithiazolylthiazole, the net bleaching reaction rates were increased by up to 1300‐fold, and turnover rates increased by two orders of magnitude. Based on a combination of classical kinetic analyses and DFT calculations, we attribute this improvement to acceleration of the rate‐determining step to produce the active species in the chain‐reaction oxidative cycloreversion.  相似文献   

18.
Negative photochromism has increased attention as a light-switch for functional materials. A development of fast photochromic molecules has been also expected because a rapid thermal back reaction within a millisecond time scale is useful for real-time switching. Herein, we synthesized the derivatives of the naphthalene-bridged phenoxyl-imidazolyl radical complex (Np−PIC) showing the negative photochromism to demonstrate the efficient strategy to increase the visible light sensitivity and to control the thermal back reaction rates. The distances of the C−C bond of the transient 2,4’-isomer shows good agreement with the thermodynamic stability, leading to the control of the thermal back reaction rate. We revealed the cyclic voltammetry and the DFT calculations are efficient to predict the characters of the HOMO and LUMO. The introduction of the electron-withdrawing dicyanoquinodimethane group is efficient to induce the photochromic reaction with increased visible-light sensitivity by the expansion of the π-conjugation. The results will give an important insight for the future development of fast-responsive negative photochromic molecules.  相似文献   

19.
Novel photochromic composite films have been successfully fabricated by dispersing pyrazolone derivative:1,3-Diphenyl-4-(3-chlorobenzal)-5-hydroxypyrazole 4-phenylsemicarbazone (1a) into hydrosol of polyvinyl alcohol (PVA). The microstructure, photochromic behaviors and thermal bleaching properties were investigated by Raman spectroscopy, X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and ultraviolet-visible absorption spectroscopy (UV-vis). The results showed that 1a was not only blended but also well dispersed in the PVA polymer films with a suitable content of chromophore. Upon UV light irradiation, the composite films gradually changed from colorless to yellow and recovered fully to the initial state upon thermal bleaching. The time constants of photochromic reactions were almost the same as those of 1a observed in their crystalline state, indicating that the photochromic phenomenon is barely disturbed by the polymer matrix.  相似文献   

20.
Azobenzene photoswitches are valuable tools for controlling properties of molecular systems with light. We have been investigating azobenzene glycoconjugates to probe carbohydrate-protein interactions and to design glycoazobenzene macrocycles with chiroptical and physicochemical properties modulated by light irradiation. To date, direct conjugation of glycosides to azobenzenes was performed by reactions providing target compounds in limited yields. We therefore sought a more effective and reliable coupling method. In this paper, we report on a straightforward thioarylation of azobenzene derivatives with glycosyl thiols as well as other thiols, thereby increasing the scope of azobenzene conjugation. Even challenging unsymmetrical conjugates can be achieved in good yields via sequential or one-pot procedures. Importantly, red-shifted azoswitches, which are addressed with visible light, were easily functionalized. Additionally, by oxidation of the sulfide bridge to the respective sulfones, both the photochromic and the thermal relaxation properties of the core azobenzene can be tuned. Utilizing this option, we realized orthogonal three-state photoswitching in mixtures containing two distinct azobenzene thioglycosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号