首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this review, we discuss the synthesis and applications of DNA-templated fluorescent silver nanoclusters in aqueous solution. Various oligonucleotide sequences or conformations have been utilized to synthesize silver nanoclusters with excellent fluorescence properties. The range of applications has expanded greatly, from live cell staining and the detection of metal ions and small biomolecules to the detection of DNA or proteins.  相似文献   

2.
Easily observed on the single molecule level, highly fluorescent and photostable silver nanoclusters have been photochemically prepared within poly(amidoamine) dendrimer hosts in aqueous solutions. The dendrimer cage stabilizes and solubilizes the nanoclusters to yield highly stable, photoactivated single nanodots ranging in size from 2 to 8 silver atoms. These multicolored, highly fluorescent species are extremely photostable and readily observed on the single molecule scale with weak mercury lamp excitation. Such easily created, bright, photoactivated water-soluble fluorophores are likely to greatly expand the impact of single molecule labeling studies in a wide variety of systems.  相似文献   

3.
Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.  相似文献   

4.
夏晓东  黄昊文 《无机化学学报》2011,27(12):2367-2371
发展了一种合成荧光银纳簇的新方法。采用易得的生物蛋白材料蛋清,无需其他还原剂,调节pH值后,通过最简便的一锅孵化法制备了荧光银纳簇。这种合成方法类似于自然界的生物矿化现象:生物分子捕获无机离子,在功能性分子作用下进行矿化过程。高分辨透射电镜分析表明纳簇的粒径小于2 nm。该合成方法环保经济。紫外-可见吸收光谱和荧光发射光谱分析表明这种银纳簇能快速响应氰离子,导致吸光度减弱,并伴随荧光猝灭。基于此原理建立了一种检测氰离子的荧光传感新方法,此分析方法显示良好的线性范围和选择性,较高的灵敏度。检测限为1.2 μmol·L-1,低于世界卫生组织推荐的饮用水标准(氰化物浓度不高于2.7 μmol·L-1)。  相似文献   

5.
Monodisperse and atomically precise Ag nanoclusters have attracted considerable recent research interest. A conventional silver cluster usually consists of a silver metallic kernel and an organic peripheral ligand shell. Nevertheless, the present inevitable problem is the unsatisfied stability of such nanoclusters. In this concept, we will give an introduction to Ag clusters protected by metal-oxo modules, which exhibit enhanced stability and unique properties. Accordingly, three different types of clusters are summarized: (1) Ag clusters protected by mononuclear oxometallates; (2) Ag clusters protected by block-like metal-oxo clusters; (3) Ag clusters protected by hollow-like metal-oxo clusters. The aim of this concept is to offer possible general guidance and insight into future rational design of more metal-oxo clusters protected silver clusters or even other coinage metal nanoclusters.  相似文献   

6.
Strictly size-controlled metal nanoclusters of palladium(0) and gold(0) can be easily formed in the organic component of an organic-inorganic composite between a gel-type resin (DV44) and silica. To this purpose, silica is impregnated at incipient wetness with a solution of the required co-monomers (N,N-dimethylacrylamide, 4-vinylpyridine and N,N′-methylene-bis-acrylamide), which are co-polymerized to give the composite. The silica-supported polymeric framework is then loaded with palladium(II) or gold(III) precursors. Their chemical reduction with aqueous solutions of sodium boronhydride yields the metal nanoclusters. Their size is controlled by the nanomorphology of the polymeric framework, which acts as a template during the nanocluster growth (Template Controlled Synthesis). Upon thermal decomposition of the polymeric template at 600°C under nitrogen, the nanostructured metals are deposited onto the silica surface. In the case of palladium the final step occurs with retention of the original size of the nanoclusters.  相似文献   

7.
Aiming to develop the facile organic fluorophore possessing excited state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE), we designed and synthesized two isomers with different linkage site between hydroxyl of 2-(2-hydroxyphenyl) benzothiazole (HBT) and a benzothiazole substituent (para position refers to p-BHBT and ortho position refers to o-BHBT). Fluorescence emission properties of p-BHBT and o-BHBT in THF/water mixtures with different water volume fractions indicated an opposite luminescence in aggregates, in which p-BHBT showed an ESIPT-dependent AIE properties while o-BHBT displayed ESIPT effect and aggregation-caused quenching (ACQ) qualities. A possible mechanism for molecular actions to illustrate the aggregating luminescence alteration of these two isomers had been proposed and verified by theoretical and experimental studies. More importantly, Probe-1, generated from dual ESIPT-AIE fluorophore p-BHBT, was successfully used as a ratiometric fluorescent chemosensor for highly selective (above 15-fold over other ROS) and sensitive (69-fold fluorescence enhancement with 0.22 μM of detection limit) detection of hydrogen peroxide in aqueous solution and living cells, respectively.  相似文献   

8.
This paper describes the preparation and characterization of poly(ethyl cyanoacrylate) colloidal particles loaded with the organic fluorophore Rhodamine 6G. We studied the physicochemical properties of the colloidal particles: morphology, size-distribution, ζ-potential, fluorescent properties and photobleaching upon UV-light illumination. The properties of the obtained colloidal particles, as well as the dye loading efficiency, were found to depend on the concentrations of ethyl cyanoacrylate monomer and Rhodamine 6G in the polymerization medium. The fluorophore release from the colloidal particles in aqueous buffer is also studied.   相似文献   

9.
In this communication, the “jump-to-contact” based STM tip-induced nanostructuring is extended to BMIBF4 ionic liquid for the first time. It is demonstrated successfully that Zn, as an example of less noble metal and being hard to deposit from aqueous solutions, can be nanostructured on Au(1 1 1) surfaces in the ionic liquid. Due to the large effective tunnel barrier in the ionic liquid, the Z-pulse required to create Zn nanoclusters in ionic liquid is about twice as large as for Cu nanoclusters of similar size in aqueous solutions. Patterns as well as large-scale arrays consisting of 100 × 100 Zn nanoclusters have been produced. The present work demonstrates the feasibility for surface nanostructuring a new category of systems that have not been possible in aqueous solutions, which could open up new opportunities for studies of nanoscopic effects from various aspects.  相似文献   

10.
We design a ratiometric fluo rescent sensing platform for bleomycin(BLM) by using proximity-dependent DNA-templated silver nanoclusters(DNA-AgNCs) probe.This ratiometric sensing system is constructed with DNA-AgNCs as single fluorophore.The proposed strategy is based on the two following facts:(1) a covert DNA can approach and transform the DNA-AgNCs with green emission(G-DNA-AgNCs) into red emission through hybridization reaction.(2) The specific cleavage of the convert DNA by BLM in the presence of Fe(Ⅱ) inhibits the discoloration of G-DNA-AgNCs.Thus,benefiting from the specific recognition of BLM and unique properties of G-DNA-AgNCs,a hignly-sensitive ratiometric sensor for BLM has been successfully developed.The detection limit is as low as 30 pmol/L.This label-free fluorescence probe possesses advantages of convenient synthetic process and low cost.Moreover,this ratiometric method has been applied to the detection of BLM in human serum samples,illustrating a promising tool for analysis of BLM in cancer therapy.  相似文献   

11.
A simple amino acid based compound (1) containing a phenyl boronic group and pyrene fluorophore showed an enhanced fluorescence in aqueous solutions at physiological pH through suppression of the photoinduced electron transfer from pyrene to boronic acid on carbohydrate binding. The compound exhibited an interesting fluorescence change depending on pH with decreased emission intensity at acidic pH but enhanced emission intensity at basic pH unlike the fluorescent carbohydrate chemosensors using a PET process with amine and aryl-boronic acid. We have characterized a dual role of phenylboronic acid as a receptor for carbohydrates as well as a quencher for the fluorescence of pyrene fluorophore.  相似文献   

12.
In this work, oligonucleotide stabilized silver nanoclusters as novel fluorescent probes were successfully utilized for the drug–DNA interaction study. Silver nanoclusters were proved to be sensitive probes for the drugs investigated (including of two kinds of intercalators, daunorubicin and quinacrine, as well as a non-intercalating binder bisBenzimide H 33258), as the detection limits at 10−8 mol L−1 level of studied drugs can be achieved. The interactions of drugs and calf thymus DNA were investigated using non-linear fit analysis, and the binding constants as well as binding site sizes were obtained. As biocompatible materials, silver nanoclusters are promising in the chemical especially biochemical analysis fields.  相似文献   

13.
Over recent years, research on the ligand‐protected silver clusters have gained significant interest owing to their unique potential applications in catalysis, organic optoelectronics, and luminescent materials. However, the synthesis of structurally precise high‐nuclearity silver nanoclusters is still challenging and become one of the prime interests of chemists. The controllable synthesis of high‐nuclearity silver nanoclusters involves the ingenious use of capping ligands or/and templating agents. Thereinto, the main role of the templating agents is to promote the order arrangement of silver ions around them to form discrete molecules. Our lab has performed comprehensive studies on the ligand‐protected silver clusters in the past eight years. This review highlights recent progress in the use of inorganic template anions, silver precursors, solvents, and the ligand types in synthesizing high‐nuclearity silver nanoclusters. Furthermore, some interesting photo‐ and electrochemical properties revealed by silver clusters including luminescent thermochromism, electrical conductivity, and electrochemical reduction of H2O2 have been also summarized.  相似文献   

14.
In this mini-review, the growth of silver nanoclusters following the reduction of silver ions in aqueous solution is studied and some clusters are characterized. A model for the molecular structure of trimer silver clusters is discussed as well as the role of aliphatic alcohol radicalsin the growth of silver nanoclusters.  相似文献   

15.
银纳米簇(Ag NCs)具有特殊的物理和化学性质,其具有广泛的应用前景和研究价值。 本文探索了以变色酸2R为稳定剂,经过两次pH调节构建一种快速制备具有强荧光特性、稳定存在且粒径小的Ag NCs的方法。 在最优实验条件下,运用该方法制备得到的Ag NCs的最大发射波长为450 nm,最大激发波长为336 nm,平均粒径为1.74 nm,主要粒经分布在0.68~2.99 nm区域内,该Ag NCs的晶格间距为0.223 nm,晶格类型为(102)。 该Ag NCs可作为探针应用于溶液中微量重金属离子和非金属离子的测定,小分子、弱酸溶液浓度等方面的检测,也可以用于细胞成像等方面。  相似文献   

16.
Diffusion-reduction interaction between microcrystalline cellulose and aqueous solution of AgNO3 was studied in the absence (taking into account the reducing properties of cellulose) and in the presence of specific reductants. The resulting intercalates of cellulose and zero-valent silver were examined by raster and transmission electron microscopy. The morphological changes in cellulose after intercalation of silver nanoclusters as well as the nanocluster size distribution in the cellulose matrix were characterized.  相似文献   

17.
G5.0‐OH PAMAM dendrimers were used to prepare fluorescent silver clusters with weaker ultraviolet irradiation reduction method, in which the molar ratio of Ag+ to PAMAM dendrimers was the key factor to determine the geometry and properties of silver nanoparticles. The results showed that because of G5.0‐OH PAMAM dendrimers as strong encapsulatores, when the molar ratios of Ag+ to PAMAM dendrimers was smaller than 5, the obtained Agn clusters (n<5) had line structures and "molecular‐like" properties, which were highly fluorescent and quite stable in aqueous solution. Whereas when the molar ratios were between 5 and 8, the obtained Agn clusters were 2D structures and their fluorescence was weaker. When the molar ratio was larger than 8, the structure of silver nanoparticles was 3D and no fluorescence was observed from the obtained silver nanoparticles.  相似文献   

18.
A stimuli‐responsive amphiphilic copolymer poly(NIPAMmb‐VBNBIn), including N‐isopropylacrylamide (NIPAM) as a thermoresponsive unit and 1‐(4‐vinyl benzyl)‐2‐naphthyl‐benzimidazole (VBNBI) as a sensitive fluorophore unit, was designed and synthesized by reversible addition‐fragmentation chain transfer polymerization. The aqueous solutions of the copolymers exhibited reversible fluorescent response to pH and temperature. In addition, the copolymers showed aggregation‐induced fluorescence enhancement in THF/water mixture. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4459–4466  相似文献   

19.
Photostability, inherent fluorescence brightness, and optical modulation of fluorescence are key attributes distinguishing silver nanoclusters as fluorophores. DNA plays a central role both by protecting the clusters in aqueous environments and by directing their formation. Herein, we characterize a new near infrared-emitting cluster with excitation and emission maxima at 750 and 810 nm, respectively that is stabilized within C(3)AC(3)AC(3)TC(3)A. Following chromatographic resolution of the near infrared species, a stoichiometry of 10 Ag/oligonucleotide was determined. Combined with excellent photostability, the cluster's 30% fluorescence quantum yield and 180,000 M(-1)cm(-1) extinction coefficient give it a fluorescence brightness that significantly improves on that of the organic dye Cy7. Fluorescence correlation analysis shows an optically accessible dark state that can be directly depopulated with longer wavelength co-illumination. The coupled increase in total fluorescence demonstrates that enhanced sensitivity can be realized through Synchronously Amplified Fluorescence Image Recovery (SAFIRe), which further differentiates this new fluorophore.  相似文献   

20.
The weak photoluminescence of silver nanoclusters prevents their broad application as luminescent nanomaterials. Recent experiments, however, have shown that gold doping can significantly enhance the photoluminescence intensity of Ag29 nanoclusters but the molecular and physical origins of this effect remain unknown. Therefore, we have computationally explored the geometric and electronic structures of Ag29 and gold‐doped Ag29?xAux (x=1–5) nanoclusters in the S0 and S1 states. We found that 1) relativistic effects that are mainly due to the Au atoms play an important role in enhancing the fluorescence intensity, especially for highly doped Ag26Au3, Ag25Au4, and Ag24Au5, and that 2) heteronuclear Au?Ag bonds can increase the stability and regulate the fluorescence intensity of isomers of these gold‐doped nanoclusters. These novel findings could help design doped silver nanoclusters with excellent luminescence properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号