首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
We have synthesized a novel wide band gap polymer P36HCTPSi derived from 3,6‐carbazole and tetraphenylsilane by palladium‐catalyzed Suzuki coupling reaction. The resultant polymer shows a high glass transition temperature (217 °C) and good thermal stability. The conjugation length of P36HCTPSi is effectively confined because of the δ‐Si interrupted polymer backbone. The polymer exhibits a violet emission with a peak at 392 nm in solution, and the band gap estimated from the onset of its absorption is 3.26 eV. The high energy emission and wide band gap of P36HCTPSi make it appropriate host for green and blue emission phosphorescent materials. Efficient energy transfers from P36HCTPSi to both fac‐tris[2‐(2‐pyridyl‐kN)‐5‐methylphenyl]iridium(III) (green emission) and bis[(4,6‐difluorophenyl)pyridinato‐N,C2]‐(picolinato)iridium(III) (blue emission) were observed in photoluminescence (PL) spectra. Highly efficient phosphorescent polymer light‐emitting devices were realized by using P36HCTPSi as the host for iridium complexes, the maximum luminous efficiencies for green and blue devices were 27.6 and 3.4 cd/A, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4784–4792, 2009  相似文献   

2.
A new phosphorescent dinuclear cationic iridium(III) complex ( Ir1 ) with a donor–acceptor–π‐bridge–acceptor–donor (D? A? π? A? D)‐conjugated oligomer ( L1 ) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited‐state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular‐orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)2(bpy)]+PF6? ( Ir0 ). Compared with Ir0 , complex Ir1 shows a more‐intense optical‐absorption capability, especially in the visible‐light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 104, which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange–red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two‐photon‐absorption properties of complexes Ir0 , Ir1 , and L1 . The free ligand ( L1 ) has a relatively small two‐photon absorption cross‐section (δmax=195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1 , it exhibits a higher two‐photon‐absorption cross‐section than ligand L1 in the near‐infrared region and an intense two‐photon‐excited phosphorescent emission. The maximum two‐photon‐absorption cross‐section of Ir1 is 481 GM, which is also significantly larger than that of Ir0 . In addition, because the strong B? F interaction between the dimesitylboryl groups and F? ions interrupts the extended π‐conjugation, complex Ir1 can be used as an excellent one‐ and two‐photon‐excited “ON–OFF” phosphorescent probe for F? ions.  相似文献   

3.
Organic electroluminescence is considered as the most competitive alternative for the future solid‐state displays and lighting techniques owing to many advantages such as self‐luminescence, high efficiency, high contrast, high color rendering index, ultra‐thin thickness, transparency, flat and flexibility, etc. The development of high‐performance organic electroluminescence has become the continuing focus of research. In this personal account, a brief overview of representative achievements in our study on the design of highly efficient novel organic light‐emitting materials (including fluorescent materials, phosphorescent iridium(III) complexes and conjugated polymers bearing phosphorescent iridium(III) complex) and high‐performance device structures together with working principles are given. At last, we will give some perspectives on this fascinating field, and also try to provide some potential directions of research on the basis of the current stage of organic electroluminescence.  相似文献   

4.
We report a new route for the design of electroluminescent polymers by grafting high-efficiency phosphorescent organometallic complexes as dopants and charge transport moieties onto alky side chains of fully conjugated polymers for polymer light-emitting diodes (PLED) with single layer/single polymers. The polymer system studied involves polyfluorene (PF) as the base conjugated polymer, carbazole (Cz) as the charge transport moiety and a source for green emission by forming an electroplex with the PF main chain, and cyclometalated iridium (Ir) complexes as the phosphorescent dopant. Energy transfer from the green Ir complex or an electroplex formed between the fluorene main chain and side-chain carbazole moieties, in addition to that from the PF main chain, to the red Ir complex can significantly enhance the device performance, and a red light-emitting device with the high efficiency 2.8 cd/A at 7 V and 65 cd/m2, comparable to that of the same Ir complex-based OLED, and a broad-band light-emitting device containing blue, green, and red peaks (2.16 cd/A at 9 V) are obtained.  相似文献   

5.
In this study, novel phosphorescent compound of iridium(III)bis(2,3‐diphenylquinoxaline)2‐(benzoimidazol‐2‐yl)pyridine (IrQB) was prepared and the emission study suggests the solid form of IrQB has less phosphorescence intensity than its solution in tetrahydrofuran (THF). To avoid the potential aggregation of IrQB in the concentrated state, poly(methyl methacrylate) (PMMA) was intentionally added as isolator to make solutions of different concentrations in THF and then solid films of IrQB/PMMA of different compositions after THF removal. Films of IrQB/PMMA prepared from dilute solutions exhibit two emission bands centered at 540 and 640 nm, respectively, which is in contrast to the sole 640‐nm emission band observed for films prepared from semidilute solutions. The 540‐ and 640‐nm bands show progressive variations of the intensity with temperature. Emission band at 540 nm is derived from the polarized optical microscope and is attributed to the IrQB aggregates, whose life‐time indicates it is phosphorescent in nature. This aggregate formation is strongly affected by the applied concentrations of IrQB and PMMA in the preparative solution state. Model to postulate the mechanism of aggregate formation in the solution and the derived film states is thereby presented in this study. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 631–639, 2008  相似文献   

6.
Wu Y  Jing H  Dong Z  Zhao Q  Wu H  Li F 《Inorganic chemistry》2011,50(16):7412-7420
In this work, a neutral iridium(III) complex [Ir(bt)(2)(acac)] (Hbt = 2-phenylbenzothiazole; Hacac = acetylacetone) has been realized as a Hg(II)-selective sensor through UV-vis absorption, phosphorescence emission, and electrochemical measurements and was further developed as a phosphorescent agent for monitoring intracellular Hg(II). Upon addition of Hg(II) to a solution of [Ir(bt)(2)(acac)], a noticeable spectral blue shift in both absorption and phosphorescent emission bands was measured. (1)H NMR spectroscopic titration experiments indicated that coordination of Hg(II) to the complex induces fast decomposition of [Ir(bt)(2)(acac)] to form a new complex, which is responsible for the significant variations in optical and electrochemical signals. Importantly, cell imaging experiments have shown that [Ir(bt)(2)(acac)] is membrane permeable and can be used to monitor the changes in Hg(II) levels within cells in a ratiometric phosphorescence mode.  相似文献   

7.
在过去的几十年里, 有机发光二极管(OLED)由于潜在的优势, 在全彩显示领域引起了高度重视. 电致磷光材料因其优异的发光性能, 引起了人们广泛关注. 对于实际应用的平板显示器, 蓝、绿、红三基色是必不可少的. 相对于高效的绿光材料, 红光磷光材料仍然存在色纯度差、效率低和亮度不足等问题, 因此设计合适的红光材料成为具有挑战性的问题. 稠杂环化合物因发光量子效率高、发光颜色可调、平衡电荷注入及迁移等优越性能而广泛应用于红色磷光铱配合物. 本文综述了近几年稠杂环化合物在小分子、树枝状及高分子红色磷光铱配合物中的应用, 阐述了铱配合物分子结构对材料光电性质及器件性能的影响, 最后展望了稠杂环化合物在红光磷光材料中的应用前景.  相似文献   

8.
Functionalization of a red phosphorescent iridium(III) complex core surrounded by rigid polyphenylene dendrons with a hole‐transporting triphenylamine surface allows to prevent the intermolecular aggregation‐induced emission quenching, improves charge recombination, and therefore enhances photo‐ and electroluminescence efficiencies of dendrimer in solid state. These multifunctional shape‐persistent dendrimers provide a new pathway to design highly efficient solution processable materials for phosphorescent organic light‐emitting diodes (PhOLEDs).  相似文献   

9.
The synthesis of electrophosphorescent chelating polymers by Suzuki polycondensation of A-A- and B-B-type monomers is described, in which the fluorene-alt-carbazole (PFCz) segment is used as polymer backbone. By using alkyl-substituted ligands of iridium complex monomers, chelating copolymers with higher contents of iridium complex can be synthesized. Chemical and photophysical characterization confirm that the Ir complex is incorporated into the polymer backbone as one of the monomer repeat units by means of two 5-bromotolylpyridine ligands. Chelating polymers with Ir complexes in the conjugated polymer backbone show highly efficient energy transfer of excitons from the PFCz host segment to the Ir complex by an intramolecular trapping mechanism. The external quantum and luminous efficiencies of a device made with PFCzMppyIrhm4 copolymer reach 4.1 % ph/el (photons/electron) and 5.4 cd A(-1), respectively, at a current density of 32.2 mA cm(-2), an emission peak of 577 nm, and a luminance of 1730 cd cm(-2). Most important, the devices made from the chelating copolymers show no notable efficiency decay with increasing current density due to reduced concentration quenching and triplet-triplet (T-T) annihilation. This indicates that incorporation of the phosphorescent complex into the rigid conjugated polymer main chain is a new way to simultaneously realize high efficiency, long-term stability, and simple processing of phosphorescent polymer light-emitting diodes.  相似文献   

10.
设计合成了以苯基苯并咪唑和吡啶三唑为配体的高效的黄绿光铱配合物(M1),并通过Suzuki缩聚反应制备了以磷光铱配合物客体为中心核、蓝光荧光聚(芴-咔唑)主体为臂的星型磷光聚合物(P2.5、P5.0和P10),着重对M1和聚合物的发光性能、电化学性能及热稳定性能进行研究。 结果表明,M1具有较高的荧光量子效率(32.06%),其荧光寿命为1.09 μs,聚合物荧光寿命为2.223.93 μs,均表现为磷光;通过调节主客体的比例,利用主客体的部分能量转移机制,来实现聚合物的不同光色,发光颜色可从蓝光向黄光变化;当M1摩尔分数为2.5%时,获得的白光聚合物(P2.5)具有较好的发光性能和热稳定性能,色坐标为(0.30,0.32),位于白光区域,其最高占有轨道(HOMO)能级和最低未占有轨道(LUMO)能级分别为5.49和2.43 eV,荧光量子产率为14.3%,荧光寿命为2.22 μs。  相似文献   

11.
A novel aggregation-induced phosphorescent emission (AIPE) was observed for iridium(III) complexes. This interesting phenomenon was attributed to the intermolecular packing, resulting in a switch from the non-emissive 3LX excited state to the emissive 3MLLCT transition, which is confirmed by X-ray diffraction studies as well as theoretical calculations.  相似文献   

12.
A hydroxy‐functionalized bipyridine ligand was polymerized with ε‐caprolactone utilizing the controlled ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. The resulting poly(ε‐caprolactone)‐containing bipyridine was characterized by 1H NMR and IR spectroscopy, and gel permeation chromatography, as well as matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, revealing the successful incorporation of the bipyridine ligand into the polymer chain. Coordination to iridium(III) and ruthenium(II) precursor complexes yielded two macroligand complexes, which were characterized by NMR, gel permeation chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight MS, cyclic voltammetry, and differential scanning calorimetry. In addition, both photophysical and electrochemical properties of the metal‐containing polymers proved the formation of a trisruthenium(II) and a trisiridium(III) polypyridyl species, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4153–4160, 2004  相似文献   

13.
Biothiols, such as cysteine (Cys) and homocysteine (Hcy), play very crucial roles in biological systems. Abnormal levels of these biothiols are often associated with many types of diseases. Therefore, the detection of Cys (or Hcy) is of great importance. In this work, we have synthesized an excellent “OFF‐ON” phosphorescent chemodosimeter 1 for sensing Cys and Hcy with high selectivity and naked‐eye detection based on an IrIII complex containing a 2,4‐dinitrobenzenesulfonyl (DNBS) group within its ligand. The “OFF‐ON” phosphorescent response can be assigned to the electron‐transfer process from IrIII center and C^N ligands to the DNBS group as the strong electron‐acceptor, which can quench the phosphorescence of probe 1 completely. The DNBS group can be cleaved by thiols of Cys or Hcy, and both the 3M LCT and 3LC states are responsible for the excited‐state properties of the reaction product of probe 1 and Cys (or Hcy). Thus, the phosphorescence is switched on. Based on these results, a general principle for designing “OFF‐ON” phosphorescent chemodosimeters based on heavy‐metal complexes has been provided. Importantly, utilizing the long emission‐lifetime of phosphorescence signal, the time‐resolved luminescent assay of 1 in sensing Cys was realized successfully, which can eliminate the interference from the short‐lived background fluorescence and improve the signal‐to‐noise ratio. As far as we know, this is the first report about the time‐resolved luminescent detection of biothiols. Finally, probe 1 has been used successfully for bioimaging the changes of Cys/Hcy concentration in living cells.  相似文献   

14.
A novel isoquinoline‐containing C^N^C ligand and its phosphorescent triphenylamine‐based alkynylgold(III) dendrimers have been synthesized. These alkynylgold(III) dendrimers serve as phosphorescent dopants in the fabrication of efficient solution‐processable organic light‐emitting devices (OLEDs). The photophysical, electrochemical, and electroluminescence properties were studied. A saturated red emission with CIE coordinates of (0.64, 0.36) and a high EQE value of 3.62 % were achieved. Unlike other red‐light‐emitting iridium(III) dendrimers, a low turn‐on voltage of less than 3 V and a reduced efficiency roll‐off at high current densities were observed; this can be accounted for by the enhanced carrier transporting ability and the relatively short lifetimes in the high‐generation dendrimers. This class of alkynylgold(III) dendrimers are promising candidates as phosphorescent dopants in the fabrication of solution‐processable OLEDs.  相似文献   

15.
Sublimable cationic iridium(III) complexes consisting of light‐emitting coordinated iridium(III) cations and nonluminous negative counter‐ions, show excellent photophysical properties, superior electrochemical behaviors and high thermal stabilities, therefore have emerged as a new library of phosphorescent materials for various organic optoelectronic devices. Here we summarize and highlight the recent progress in sublimable cationic iridium(III) complexes, regarding the material design strategies, synthetic routes, photoluminescent characteristics in both solutions and neat films, together with the current utilization in organic light‐emitting diodes based on the emissive material layers fabricated by vacuum evaporation deposition. Finally, we present a brief outlook thereon, indicating the great promise and brilliant application prospect of sublimable cationic iridium(III) complexes in future flat‐panel display and solid‐state lighting technology.  相似文献   

16.
To tune aggregation/excimer emission and obtain a single active emitter for white polymer light-emitting devices (PLEDs), a heterobimetallic Pt(II)-Ir(III) complex of FIr(pic)-C(6)DBC(6)-(pic)PtF was designed and synthesized, in which C(6)DBC(6) is a di(phenyloxyhexyloxy) bridging group, FIr(pic) is an iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C(2)'] (picolinate) chromophore and FPt(pic) is a platinum(II) [(4,6-difluorophenyl)pyridinato-N,C(2)'] (picolinate) chromophore. Its physical and opto-electronic properties were investigated. Interestingly, the excimer emission was efficiently controlled by this heterobimetallic Pt(II)-Ir(III) complex compared to the PL profile of the mononuclear FPt(pic) complex in the solid state. Near-white emissions were obtained in the single emissive layer (SEL) PLEDs using this heterobimetallic Pt(II)-Ir(III) complex as a single dopant and poly(vinylcarbazole) as a host matrix at dopant concentrations from 0.5 wt% to 2 wt%. This work indicates that incorporating a non-planar iridium(III) complex into the planar platinum(II) complex can control aggregation/excimer emissions and a single phosphorescent emitter can be obtained to exhibit white emission in SEL devices.  相似文献   

17.
Multifunctional phosphorescent bis-cyclometallated iridium(III) complexes based on the 2-phenyl-1,2,3-benzotriazole moiety and bearing branched hole-transporting carbazole fragments were synthesized. The isolated compounds were found to be amorphous and expressed very good solubility. Introduction of flexible aliphatic chains of various lengths into the iridium complexes enabled manipulation of their glass transition temperature. The iridium complexes exhibited red phosphorescence emission at 650 nm with the lifetime of 5.7 μs and phosphorescence quantum yields of 0.22 and 0.17 in solution and solid state, respectively, at room temperature. The shielding effect of the carbazolyl moieties on the concentration quenching of phosphorescence of the iridium centers was found to result in the increased excited state lifetime and quantum yield due to the suppressed exciton migration. Non-optimized OLED devices, based on the phosphorescent bis-cyclometallated iridium(III) complex without host material were fabricated and their electroluminescence properties were evaluated.  相似文献   

18.
Color‐tuning for phosphorescent emitters in organic light‐emitting diodes (OLEDs) across the entire visible spectrum is prerequisite to fulfil flexible full‐color displays and white solid‐state lighting. Heteroleptic 2‐phenylpyridine‐type (ppy‐type) Ir(III) and Pt(II) complexes as phosphorescent emitters have been well exploited in the electroluminescence (EL) field due to their outstanding EL performance. Furthermore, the photophysical characters of these heteroleptic Ir(III) and Pt(II) complexes are generally dominated by the nature of cyclometalating ppy‐type ligands. Accordingly, either sophisticated modification or judicious combination of different cyclometalating ppy‐type ligands will provide a wonderful platform to tune their emission color. In this personal account, we put a special emphasis on our contributions to the novel color‐tuning strategies in these heteroleptic ppy‐type Ir(III) and Pt(II) complexes. In addition, afforded by our novel color‐tuning strategies, ambipolar character or enhanced electron injection/transport (EI/ET) features can be furnished to bring high EL performances.  相似文献   

19.
We successfully developed phosphorescent cyclometallated iridium‐containing metallopolymers, which are near‐red luminescent iridium complexes bearing phosphine‐containing copolymers used as polymer ligands, and investigated their photoluminescence and electroluminescence behavior. The phosphine copolymer ligand made from methyl methacrylate and 4‐styryldiphenylphosphine can be used as an anchor, which coordinates luminescent iridium units to form the metallopolymer easily. Organic light‐emitting diodes were fabricated from the metallopolymer and its nonpolymer analog, [IrCl(piq)2PPh3]. These complexes exhibited quite similar luminescence behavior, except for emission from the free‐phosphine‐units in the polymer side chain and their energy‐transferring properties from host to guest materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4366–4378, 2009  相似文献   

20.
Nowadays, the design and development of novel phosphorescent iridium(III) complexes for various optoelectronic applications is a well-recognized area of research. The fascinating photophysical properties of iridium(III) compounds are strongly influenced by the spin-orbit coupling exerted by the iridium(III) core, usually resulting in intense emissions with short excited-state lifetimes, which can be precisely controlled with the aid of molecular engineering of the chelating ligand. This review focuses on the recent developments and state of the art knowledge on phosphorescent iridium(III) compounds, especially on heteroleptic complexes derived from 2,3′-bipyridine class of cyclometalating and ancillary ligands, highlighting the excited state phenomenon behind their emission behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号