首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lanthanum trivalent ions (La(3+)) doped titanium dioxide (TiO(2)) nanopowders in the range of 20-60 nm were prepared successfully by plasma spray in the self-developed plasma spray equipment. The photocatalytic activity of samples at different doping concentrations in photocatalytic degradation of methyl orange was discussed. The nanopowders prepared were characterized by transmission electron microscopy, X-ray diffraction, ultraviolet-visible spectra, photoluminescence (PL) and X-ray photoelectron spectroscopy. The results show that La(3+) doping increased the photocatalytic activity of TiO(2) greatly, the optimal doping concentration was 0.5 at%. The La(3+) doping decreases the particle size and the distribution of particle sizes becomes more uniform. The doped powders were the mixture of anatase and rutile phase. The contents of anatase phase decreased firstly and then increased with an increase in the contents of La(3+). The intrinsic absorption band of La(3+) doped TiO(2) nanopowders appears red shift from that of pure TiO(2) nanopowders. The intensity of PL spectra increases and then decreases with increasing the content of La(3+). The PL spectral intensity reaches its peak when the ratio of La(3+)/TiO(2) is 0.2 at%. There are O, Ti, C and La elements in the prepared La(3+) doped TiO(2) nanopowders, La element still exists in trivalent and Ti element always exists in tetravalent.  相似文献   

2.
Iron(III)-doped TiO(2) nanopowders, with controlled iron to titanium atomic ratios (R(Fe/Ti)) ranging from nominal 0 to 20%, were synthesized using oxidative pyrolysis of liquid-feed metallorganic precursors in a radiation-frequency (RF) thermal plasma. The valence of iron doped in the TiO(2), phase formation, defect structures, band gaps, and magnetic properties of the resultant nanopowders were systematically investigated using M?ssbauer spectroscopy, XRD, Raman spectroscopy, TEM/HRTEM, UV-vis spectroscopy, and measurements of magnetic properties. The iron doped in TiO(2) was trivalent (3+) in a high-spin state as determined by the isomer shift and quadrupole splitting from the M?ssbauer spectra. No other phases except anatase and rutile TiO(2) were identified in the resultant nanopowders. Interestingly, thermodynamically metastable anatase predominated in the undoped TiO(2) nanopowders, which can be explained from a kinetic point of view based on classical homogeneous nucleation theory. With iron doping, the formation of rutile was strongly promoted because rutile is more tolerant than anatase to the defects such as oxygen vacancies resulting from the substitution of Fe(3+) for Ti(4+) in TiO(2). The concentration of oxygen vacancies reached a maximum at R(Fe/Ti) = 2% above which excessive oxygen vacancies tended to concentrate. As a result of this concentration, an extended defect like crystallographic shear (CS) structure was established. With iron doping, red shift of the absorption edges occurred in addition to the d-d electron transition of iron in the visible light region. The as-prepared iron-doped TiO(2) nanopowders were paramagnetic in nature at room temperature.  相似文献   

3.
Well-crystallized iron(III)-doped TiO2 nanopowders with controlled Fe3+ doping concentration and uniform dopant distribution, have been synthesized with plasma oxidative pyrolysis. The photocatalytic reactivity of the synthesized TiO2 nanopowders with a mean particle size of 50-70 nm was quantified in terms of the degradation rates of methyl orange (MO) in aqueous TiO2 suspension under UV (mainly 365 and 316 nm) and visible light irradiation (mainly 405 and 436 nm). The photodecomposition of MO over TiO2 nanopowders followed a distinct two-stage pseudo first order kinetics. Interestingly, the photocatalytic reactivity depends not only on the iron doping concentration but also on the wavelength of the irradiating light. Under UV irradiation, nominally undoped TiO2 had much higher reactivity than Fe3+ -doped TiO2, suggesting that Fe3+ doping (> 0.05 at. %) in TiO2 with a mean particle size of approximately 60 nm was detrimental to the photocatalytic decomposition of methyl orange. Whereas, under visible light irradiation, the Fe3+ -doped TiO2 with an intermediate iron doping concentration of approximately 1 at. % had the highest photocatalytic reactivity due to the narrowing of band gap so that it could effectively absorb the light with longer wavelength. A strategy for improving the photocatalytic reactivity of Fe3+ -doped TiO2 used in the visible light region is also proposed.  相似文献   

4.
Mixed-phase TiO2 nanopowders with different ratios of anatase and rutile have been successfully synthesized using atmospheric pressure plasma jet driven by dual-frequency power sources. The crystal structures of the TiO2 nanopowders were characterized by X-ray diffraction, SAED, HRTEM, and Raman shift spectroscopy. These results indicated that samples possessed anatase and rutile structure, in addition, the crystallinity of the TiO2 nanopowders increased and the chlorine contamination decreased with discharge RF power increasing. The photocatalytic activity of the TiO2 nanopowders was evaluated by decomposition methylene blue solution. The TiO2 nanopowders which were produced at the discharge RF power of 110 W had the highest photocatalytic activity. Optical emission spectroscopy (OES) was used to detect various excited species in the plasma jet. The results indicate that the various RF power significantly changes the intensities of emission lines (Ar, Ar+, Ti, Ti+, Ti2+, Ti3+ and O), which results in the TiO2 nanopowders a mixture of anatase and rutile phases. The nonequilibrium chemical composition could be formed in one step without anneal. It may have potential applications for synthesizing nanosized particles of high crystallinity by reactive nonthermal plasma processing.  相似文献   

5.
以四异丙氧基钛(TTIP)为钛源, 采用溶胶-凝胶及水热合成方法, 制备了不同Eu3+含量的TiO2纳米晶催化剂, 运用载射线衍射谱、紫外-可见漫反射光谱仪、X射线光电子能谱仪和电感耦合等离子体原子发射光谱仪等手段对催化剂晶型、微晶尺寸、表面状态、组成及光学性能进行表征.结果表明, 所制备的样品均为锐钛矿型纳米晶, 粒子尺寸在9 nm左右, 铕以Eu2O3的形式存在于TiO2的晶格间隙. 在紫外光条件下降解部分水解聚丙烯酰胺(HPAM), 通过比较Eu3+的不同掺杂量对催化活性的影响, 得出Eu3+的最佳掺杂量为2.4%(w), 矿化率最终可达67%. 通过液质联机测定HPAM降解的中间产物, 推断了Eu3+/TiO2降解HPAM的机理.  相似文献   

6.
Pd/TiO(2) catalysts have been prepared using TiO(2) supports consisting of various rutile/anatase crystalline phase compositions. Increasing percentages of rutile phase in the TiO(2) resulted in a decrease in Brunauer-Emmett-Teller surface areas, fewer Ti(3+) sites, and lower Pd dispersion. While acetylene conversions were found to be merely dependent on Pd dispersion, ethylene selectivity appeared to be strongly affected by the presence of Ti(3+) in the TiO(2) samples. When TiO(2) samples with 0-44% rutile were used, high ethylene selectivities (58-93%) were obtained whereas ethylene losses occurred for those supported on TiO(2) with 85% or 100% rutile phase. X-ray photoelectron spectroscopy and electron spin resonance experiments revealed that a significant amount of Ti(3+) existed in the TiO(2) samples composed of 0-44% rutile. The presence of Ti(3+) in contact with Pd can probably lower the adsorption strength of ethylene resulting in an ethylene gain. Among the five catalysts used in this study, the results for Pd/TiO(2)-R44 suggest an optimum anatase/rutile composition of the TiO(2) used to obtain high selectivity of ethylene in selective acetylene hydrogenation.  相似文献   

7.
程修文  于秀娟 《应用化学》2012,29(3):291-296
以钛酸四丁酯为钛源、功能生物小分子胱氨酸为掺杂剂,采用溶胶-凝胶法同步合成了C-N-S-TiO2光催化剂,利用XRD、XPS、FT-IR和DRS等测试技术对样品的结构及物化性能进行了表征。XRD和DRS分析表明,共掺杂抑制了TiO2晶粒的生长,提高了晶相转变温度,且C-N-S-TiO2样品的吸收带边明显"红移",光吸收范围一直延长至800 nm左右。XPS分析结果显示,C-N-S-TiO2样品表面产生了杂质能级,C、S元素分别取代部分晶格Ti4+以CO23-和S6+形式存在;而N峰呈宽化状态,以O—Ti—N和Ti—O—N键存在,且样品表面羟基含量明显增加。以罗丹明B染料为模型污染物,考察了该催化剂的可见光催化活性。结果表明,与P25 TiO2比较,C-N-S-TiO2光催化剂活性得到改进,C-N-S-TiO2光催化剂在470~800 nm波长下辐射120 min后对罗丹明B的降解率可高达83%。  相似文献   

8.
Sol-Gel法制备La~(3+)改性的TiO_2纳米粉体   总被引:2,自引:0,他引:2  
在常用的半导体光催化材料中,研究较多的有TiO2、ZnO、CdS等[1-3],其中TiO2因性能稳定、催化活性高、无毒、不产生二次污染和成本低廉等优点,在光催化降解污染物领域显示出优越的应用前景[3-6].  相似文献   

9.
掺杂TiO2纳米粉的合成、表征及催化性能研究   总被引:33,自引:0,他引:33  
 考察了制备方法对掺杂Fe2O3,ZrO2或SnO2的TiO2纳米粉的XRD谱及催化性能的影响.结果表明,用共沉淀法制备的Fe2O3·TiO2对其XRD谱强度的影响较大,而负载法制备Fe2O3/TiO2对其XRD谱的强度无影响;两种方法制备的掺杂ZrO2或SnO2的TiO2样品对XRD谱均无影响.TEM结果表明,TiO2纳米粉的晶粒均匀,粒径为14~18nm.苯酚水溶液的光催化氧化分解反应结果表明,与TiO2样品相比,负载型Fe2O3/TiO2的催化活性明显较高,但ZrO2/TiO2,SnO2/TiO2和共沉淀型Fe2O3·TiO2的催化活性变化不大.可以认为,对掺杂Fe2O3的TiO2催化剂,负载法是较好的制备方法.  相似文献   

10.
The electronic properties of N-doped rutile TiO2(110) have been investigated using synchrotron-based photoemission and density-functional calculations. The doping via N2+ ion bombardment leads to the implantation of N atoms (approximately 5% saturation concentration) that coexist with O vacancies. Ti 2p core level spectra show the formation of Ti3+ and a second partially reduced Ti species with oxidation states between +4 and +3. The valence region of the TiO(2-x)N(y)(110) systems exhibits a broad peak for Ti3+ near the Fermi level and N-induced features above the O 2p valence band that shift the edge up by approximately 0.5 eV. The magnitude of this shift is consistent with the "redshift" observed in the ultraviolet spectrum of N-doped TiO2. The experimental and theoretical results show the existence of attractive interactions between the dopant and O vacancies. First, the presence of N embedded in the surface layer reduces the formation energy of O vacancies. Second, the existence of O vacancies stabilizes the N impurities with respect to N2(g) formation. When oxygen vacancies and N impurities are together there is an electron transfer from the higher energy 3d band of Ti3+ to the lower energy 2p band of the N(2-) impurities.  相似文献   

11.
A coordination complex, Ti(III)[OC(NH2)2]6Cl3, was first synthesized via reacting hot alcoholic solutions of TiCl3 and urea, which was subsequently employed as a molecular precursor for nanocrystalline TiO2 via thermal decomposition. Fourier transform IR spectroscopy confirmed C=O-->Ti coordination bond formation, while Rietveld refinement revealed a hexagonal crystal structure (space group: Pc1) for the complex with a = b = 16.438(4) A, c = 15.423(3) A, alpha = beta = 90 degrees , gamma = 120 degrees , and V = 3608.9(13) A3. Thermal decomposition and phase evolution processes of the complex were investigated in air by combined means of elemental analysis, Fourier transform IR, differential thermal analysis/thermogravimetry, X-ray diffraction, and Raman spectroscopy. Characterizations of the resultant TiO2 powders were achieved by scanning electron microscopy, high-resolution transmission electron microscopy, the Brunauer-Emmett-Teller analysis, thermal desorption spectroscopy, and UV-vis spectroscopy. Simultaneous doping of C, N, and Cl was realized upon pyrolyzing the molecular precursor in air, leading to significantly lowered direct and indirect interband transition energies of the resultant TiO2. As a consequence, the anatase nanopowders obtained at 450 and 500 degrees C, with specific surface areas of 97.8 and 64.1 m2/g, respectively, exhibit significantly higher efficiency than Degussa P25 in the bleaching of methyl orange solution under visible light (mainly consisting two wavelengths of 405 and 436 nm at 81:100 intensity ratio) irradiation, either at a fixed weight of TiO2 loading or at a fixed surface area of the loaded TiO2 powder.  相似文献   

12.
Eu^2+和Mn^2+在Sr3MgSi2O8中的光致发光研究   总被引:7,自引:1,他引:7  
研究了Eu^2+和Mn^2+共激活的Sr3MgSi2O8的荧光性质。Eu^2+和Mn^2+在460nm和690nm的发射峰分别由Eu^2+的5d→4f跃迁和Mn^2+的^4T1(^4G)→^6A1g(^6S)跃迁产生。未观察到单掺杂Mn^2+的Sr3MgSi2O8的荧光发射,而掺入Eu^2+后则出现了Mn^2+的690nm光致发光峰,表明Eu^2+对Mn^2+有敏化作用。Eu^2+的荧光寿命也受M  相似文献   

13.
Phase transformation of TiO2 from anatase to rutile is studied by UV Raman spectroscopy excited by 325 and 244 nm lasers, visible Raman spectroscopy excited by 532 nm laser, X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV Raman spectroscopy is found to be more sensitive to the surface region of TiO2 than visible Raman spectroscopy and XRD because TiO2 strongly absorbs UV light. The anatase phase is detected by UV Raman spectroscopy for the sample calcined at higher temperatures than when it is detected by visible Raman spectroscopy and XRD. The inconsistency in the results from the above three techniques suggests that the anatase phase of TiO2 at the surface region can remain at relatively higher calcination temperatures than that in the bulk during the phase transformation. The TEM results show that small particles agglomerate into big particles when the TiO2 sample is calcined at elevated temperatures and the agglomeration of the TiO2 particles is along with the phase transformation from anatase to rutile. It is suggested that the rutile phase starts to form at the interfaces between the anatase particles in the agglomerated TiO2 particles; namely, the anatase phase in the inner region of the agglomerated TiO2 particles turns out to change into the rutile phase more easily than that in the outer surface region of the agglomerated TiO2 particles. When the anatase particles of TiO2 are covered with highly dispersed La2O3, the phase transformation in both the bulk and surface regions is significantly retarded, owing to avoiding direct contact of the anatase particles and occupying the surface defect sites of the anatase particles by La2O3.  相似文献   

14.
Photoexcited TiO(2) has been found to generate reactive oxygen species, yet the precise mechanism and chemical nature of the generated oxy species especially regarding the different crystal phases remain to be elucidated. Visible light-induced reactions of a suspension of titanium dioxide (TiO(2)) in water were investigated using electron paramagnetic resonance (EPR) coupled with the spin-trapping technique. Increased levels of both hydroxyl (˙OH) and superoxide anion (˙O(2)(-)) radicals were detected in TiO(2) rutile and anatase nanoparticles (50 nm). The intensity of signals assigned to the ˙OH and ˙O(2)(-) radicals was larger for the anatase phase than that originating from rutile. Moreover, illumination with visible (nonUV) light enhanced ˙O(2)(-) formation in the rutile phase. Singlet oxygen was not detected in water suspension of TiO(2) neither in rutile nor in anatase nanoparticles, but irradiation of the rutile phase with visible light revealed a signal, which could be attributed to singlet oxygen formation. The blue part of visible spectrum (400-500 nm) was found to be responsible for the light-induced ROS in TiO(2) nanoparticles. The characterization of the mechanism of visible light-induced oxy radicals formation by TiO(2) nanoparticles could contribute to its use as a sterilization agent.  相似文献   

15.
Reduced states in TiO(2) : (17)O hyperfine sublevel correlation spectroscopy was used to monitor the local environment of stable Ti(3+) ions generated in a (17)O-enriched polycrystalline TiO(2) (rutile) sample. A hyperfine interaction of about 8 MHz is found, which is analogous to that observed for molecular Ti(3+) aqua complex cations and suggests a localized nature of the unpaired electron wave function for these centers at 4 K.  相似文献   

16.
The role of bulk defects in the oxygen chemistry on reduced rutile TiO(2)(110)-(1 × 1) has been studied by means of temperature-programmed desorption spectroscopy and scanning tunneling microscopy measurements. Following O(2) adsorption at 130 K, the amount of O(2) desorbing at ~410 K initially increased with increasing density of surface oxygen vacancies but decreased after further reduction of the TiO(2)(110) crystal. We explain these results by withdrawal of excess charge (Ti(3+)) from the TiO(2)(110) lattice to oxygen species on the surface and by a reaction of Ti interstitials with O adatoms upon heating. Important consequences for the understanding of the O(2)-TiO(2) interaction are discussed.  相似文献   

17.
电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究   总被引:20,自引:1,他引:19  
采用光电流谱、透射光谱和扫描微探针显微镜技术对电沉积法制备的二氧化钛纳米微粒膜的光电化学性能和表面形貌进行了研究.结果表明,不同制备条件下的二氧化钛纳米微粒膜具有与紧密的半导体电极不同的光电化学性质,并探讨了其光电化学性能与表面形貌的关系.  相似文献   

18.
Identification of charge transfer and trapping sites on semiconducting oxide surfaces is of fundamental importance in furthering the field of heterogeneous photocatalysts. Using scanning tunneling microscopy, electron energy loss spectroscopy, and photodesorption, we observed both electron trapping and hole transfer events on the (110) surface of TiO2 rutile. UV irradiation of a saturated monolayer of trimethyl acetate (TMA) on TiO2(110) at room temperature resulted in hole transfer to the carboxylate group, followed by (CH3)3C-COO bond cleavage and desorption of CO2 and isobutene/isobutane. Hole transfer to TMA proceeded in the absence of a gas-phase electron scavenger (which is typically O2) because the accompanying photogenerated electrons could be trapped at the surface as Ti3+ cations bound to bridging OH groups. The extent of electron trapping, gauged by electron spectroscopy, correlated directly with the yields of photodesorption fragments resulting from the hole transfer channel. Charge at the Ti3+ sites was titrated in the dark via a reaction between O2 and the Ti3+-OH groups.  相似文献   

19.
Y掺杂纳米TiO2的合成及晶型转变过程   总被引:11,自引:0,他引:11  
溶胶-凝胶;锐钛型;金红石型;Y掺杂纳米TiO2的合成及晶型转变过程  相似文献   

20.
This study investigates the adsorption and reactions of H(2)O(2) on TiO(2) anatase (101) and rutile (110) surfaces by first-principles calculations based on the density functional theory in conjunction with the projected augmented wave approach, using PW91, PBE, and revPBE functionals. Adsorption mechanisms of H(2)O(2) and its fragments on both surfaces are analyzed. It is found that H(2)O(2) , H(2)O, and HO preferentially adsorb at the Ti(5c) site, meanwhile HOO, O, and H preferentially adsorb at the (O(2c))(Ti(5c)), (Ti(5c))(2), and O(2c) sites, respectively. Potential energy profiles of the adsorption processes on both surfaces have been constructed using the nudged elastic band method. The two restructured surfaces, the 1/3 ML oxygen covered TiO(2) and the hydroxylated TiO(2), are produced with the H(2)O(2) dehydration and deoxidation, respectively. The formation of main products, H(2)O(g) and the 1/3 ML oxygen covered TiO(2) surface, is exothermic by 2.8 and 5.0 kcal/mol, requiring energy barriers of 0.8 and 1.1 kcal/mol on the rutile (110) and anatase (101) surface, respectively. The rate constants for the H(2)O(2) dehydration processes have been predicted to be 6.65 × 10(-27) T(4.38) exp(-0.14 kcal mol(-1)/RT) and 3.18 × 10(-23) T(5.60) exp(-2.92 kcal mol(-1)/RT) respectively, in units of cm(3) molecule(-1) s(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号