首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azaspiracids (AZAs) are a group of polyether toxins that cause food poisoning in humans. These toxins, produced by marine dinoflagellates, accumulate in filter-feeding shellfish, especially mussels. Sensitive liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS(n)) methods have been developed for the determination of the major AZAs and their hydroxyl analogues. These methods, utilising both chromatographic and mass resolution, were applied for the determination of 10 AZAs in mussels (Mytilus edulis). An optimised isocratic reversed phase method (3 microm Luna-2 C18 column) separated 10 azaspiracids using acetonitrile/water (46:54, v/v) containing 0.05% trifluoroacetic acid (TFA) and 0.004% ammonium acetate in 55 min. Analyte determination using MS3 involved trapping and fragmentation of the [M + H]+ and [M + H - H2O]+ ions with detection of the [M + H - 2H2O]+ ion for each AZA. Linear calibrations were obtained for AZA1, using spiked shellfish extracts, in the range 0.05-1.00 microg/ml (r2 = 0.997) with a detection limit of 5 pg (signal : noise = 3). The major fragmentation pathways in hydroxylated azaspiracids were elucidated using hydrogen/deuterium (H/D) exchange experiments. An LC-MS3 method was developed using unique parent ions and product ions, [M + H - H2O - CgH10O2R1R3]+, that involved fragmentation of the A-ring. This facilitated the discrimination between 10 azapiracids, AZA1-10. Thus, this rapid LC-MS3 method did not require complete chromatographic resolution and the run-time of 7 min had detection limits better than 20 pg for each toxin.  相似文献   

2.
A rapid and high sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed and validated for the quantification of zolpidem in human EDTA plasma using ondansetron (IS) as an internal standard. The analyte and IS were extracted from human plasma using ethyl acetate and separated on a C18 column (Inertsil-ODS, 5 μm, 4.6 × 50 mm) interfaced with a triple quadrupole tandem mass spectrometer. The mobile phase, which consisted of a mixture of methanol and 20 mM ammonium formate (pH 5.00 ± 0.05; 75:25 v/v), was injected at a flow rate of 0.40 mL/min. The retention times of zolpidem and IS were approximately 1.76 and 1.22. The LC run time was 3 min. The electrospray ionization source was operated in positive ion mode. Multiple reaction monitoring used the [M + H](+) ions m/z 308.13 → 235.21 for zolpidem and m/z 294.02 → 170.09 for the ondansetron, respectively. Five freeze-thaw cycles was established at -20 and -70°C.The linearity of the response/concentration curve was established in human EDTA plasma over the concentration range 0.10-149.83 ng/mL. The lower detection limit [(signal-to-noise (S/N) > 3] was 0.04 ng/mL and the lower limit of quantification (S/N > 10) was 0.10 ng/mL. This LC-MS-MS method was validated with intra-batch and inter-batch precision of 0.52-8.66.The intra-batch and inter-batch accuracy was 96.66-106.11. Recovery of zolpidem in human plasma was 87.00% and IS recovery was 81.60%. The primary pharmacokinetic parameters were T(max) (h) = (1.25 ± 0.725), C(max) (ng/mL) (127.80 ± 34.081), AUC(0→t), = (665.37 ± 320.982) and AUC(0→∞), 686.03 ± 342.952, respectively.  相似文献   

3.
Azaspiracid (AZA1), a recently discovered marine toxin, is responsible for the new human toxic syndrome, azaspiracid poisoning (AZP), which is caused by the consumption of contaminated shellfish. A new, sensitive liquid chromatography/mass spectrometry (LC/MS) method has been developed for the determination of AZA1 and its analogues, 8-methylazaspiracid (AZA2) and 22-demethylazaspiracid (AZA3). Separation of these toxins was achieved using reversed-phase LC and coupled, via an electrospray ionisation (ESI) source, to an ion-trap mass spectrometer. Spectra showed the protonated molecules, [M + H]+, and their major product ions, due to the sequential loss of two water molecules, [M + H - H2O]+, [M + H - 2H2O]+, in addition to fragment ions that are characteristic of these cyclic polyethers. A highly specific and sensitive LC/MS(3) analytical method was developed and, using shellfish extracts containing AZA1, the detection limit (S/N = 3) was 4 pg on-column, corresponding to 0.8 ng/mL. Using the protocol presented here, this is equivalent to 0.37 ng/g shellfish tissue and good linear calibrations were obtained for AZA1 in shellfish extracts (average r2 = 0.9988). Good reproducibility was achieved with % RSD values (N = 5) ranging from 1.5% (0.75 microg/mL) to 4.2% (0.05 microg/mL). An efficient procedure for the extraction of toxins from shellfish aided the development of a rapid protocol for the determination of the three predominant azaspiracids.  相似文献   

4.
Yessotoxins are a group of large polyether toxins, produced by marine dinoflagellates, which cause widespread contamination of filter-feeding shellfish. A new, sensitive liquid chromatography-mass spectrometry (LC-MS) method has been developed for the determination of yessotoxin (YTX) and 45-hydroxy-yessotoxin (45-OHYTX), a major metabolite in shellfish. The LC system was coupled, via an electrospray ionisation (ESI) source, to an ion-trap MS in negative mode. The molecular related ion species at m/z 1141 [M-2Na+H]- was used as the parent ion for multiple MS experiments. MS-MS and MS3 gave major fragment ions at m/z 1061 [1141-SO3H]- and m/z 945 [1061-C9H12O]-. Predominant ions, that are due to the fragmentation of the backbone structure of YTXs, were observed at the MS4 stage. Reversed-phase LC using a C16 amide column was preferable to C18 phases for the separation of YTX and 45-OHYTX. Optimum calibration and reproducibility data were obtained for YTX using LC-MS-MS; r 2=0.9960, RSD < or = 6.3% at 0.25 microg YTX/g (n=5). The detection limit (S/N=3) was 30 pg YTX on-column which corresponded to 3 ng/g shellfish tissue.  相似文献   

5.
A non-aqueous reversed-phase liquid chromatographic method coupled to electrospray ionisation (ESI) tandem mass spectrometry was developed for the analysis of triacylglycerols (TGs). The synthetic TGs studied were separated according to their equivalent carbon number with a gradient of methanol (containing 0.01% (v/v) formate adjusted to pH 5.3 with ammonia) and chloroform. ESI mass spectra of TGs yielded positive ion current signals for [M + NH(4)](+) and [M + NH(4)-RCOONH(4)](+). The mass spectra also showed signals believed to arise from [M + K](+). Collision-induced dissociation (CID) of the [M + NH(4)](+) precursor ion yielded [M + NH(4) - RCOONH(4)](+), [RCO + 74](+) and [RCO](+) product ions as aids for the structural elucidation of the TGs. In addition, [RCO - 18](+) and small amounts of [RCO - 2](+) product ions were also found. The latter ions were observed only for TGs containing unsaturated fatty acids. CID of ammoniated 1-stearoyl-2-oleoyl-3-linoleoyl-glycerol (18:0/18:1/18:2) indicated that neutral loss of the sn-2 fatty acid was energetically less favourable than loss of the fatty acid from the sn-1 or sn-3 position.  相似文献   

6.
A method is described using LC-MS-MS for the detection of five different enniatins in grain. The method involves extraction of the fungal secondary metabolites using acetonitrile-water and quantification using LC-MS-MS with atmospheric pressure chemical ionisation, without further treatment of sample extracts. The selected ion reaction of [M + NH4]+ to [M + H]+ was utilised in the specific detection of the compounds. Mean recoveries (n = 5-12) of enniatins from spiked grain samples over a period of six months were 99-115%, 86-131%, 97-113%, 73-100% and 78-114% for beauvericin, enniatin A, A1, B and B1, respectively. The limits of detection were 3.0 microg/kg for beauvericin, enniatin A, B and B1 and 4.0 microg/kg for enniatin A1, which corresponds to on-column detection limits of 7.5 pg and 10 pg, respectively.  相似文献   

7.
A highly sensitive liquid chromatographic-tandem mass spectrometric method (LC-MS-MS) is developed to quantitate ranolazine in human plasma. The analyte and internal standard tramadol are extracted from plasma by liquid-liquid extraction using diethyl ether-dichloromethane (60:40 v/v), and separated on a Zorbax extend C(18) column using methanol-10mM ammonium acetate (60:40 v/v, pH 4.0) at a flow of 1.0 mL/min. Detection is carried out by multiple reaction monitoring on a QtrapTM LC-MS-MS system with an electrospray ionization interface. The assay is linear over the range 10-5000 ng/mL with a limit of quantitation of 10 ng/mL and a lower limit of detection (S/N > 3) of 1 ng/mL. Intra- and inter-day precision are < 3.1% and < 2.8%, respectively, and the accuracy is in the range 96.7-101.6%. The validated method is successfully used to analyze the drug in samples of human plasma for pharmacokinetic studies.  相似文献   

8.
A highly sensitive and simple high-performance liquid chromatographic-tandem mass spectrometric (LC-MS-MS) assay is developed and validated for the quantification of sulforaphane and its metabolites in rat plasma. Sulforaphane (SFN) and its metabolites, sulforaphane glutathione (SFN-GSH) and sulforaphane N-acetyl cysteine (SFN-NAC) conjugates, are extracted from rat plasma by methanol-formic acid (100:0.1, v/v) and analyzed using a reversed-phase gradient elution on a Develosil 3 μm RP-Aqueous C(30) 140? column. A 15-min linear gradient with acetonitrile-water (5:95, v/v), containing 10 mM ammonium acetate and 0.2% formic acid, as mobile phase A, and acetonitrile-water (95:5, v/v), containing 10 mM ammonium acetate and 0.2% formic acid as mobile phase B, is used. Sulforaphane and its metabolites are well separated. Sulforaphene is used as the internal standard. The lower limits of quantification are 1 ng/mL for SFN and 10 ng/mL for both SFN-NAC and SFN-GSH. The calibration curves are linear over the concentration range of 25-20,000 ng/mL of plasma for each analyte. This novel LC-MS-MS method shows satisfactory accuracy and precision and is sufficiently sensitive for the performance of pharmacokinetic studies in rats.  相似文献   

9.
A sensitive method for the simultaneous determination of fluoxetine and its major active metabolite norfluoxetine in plasma was developed, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. The samples were extracted from alkalised plasma with hexane-isoamyl alcohol (98:2, v/v) followed by back-extraction into formic acid (2%). Chromatography was performed on a Phenomenex Luna C18 (2) 5 microm, 150x2 mm column with a mobile phase consisting of acetonitrile-0.02% formic acid (340:660, v/v) at a flow-rate of 0.35 ml/min. Detection was achieved by a Perkin-Elmer Sciex API 2000 mass spectrometer (LC-MS-MS) set at unit resolution in the multiple reaction monitoring mode. TurbolonSpray ionisation was used for ion production. The mean recoveries for fluoxetine and norfluoxetine were 98 and 97%, respectively, with a lower limit of quantification set at 0.15 ng/ml for the analyte and its metabolite. This assay method makes use of the increased sensitivity and selectivity of mass spectrometric (MS-MS) detection to allow for a more rapid (extraction and chromatography) and sensitive method for the simultaneous determination of fluoxetine and norfluoxetine in human plasma than has previously been described.  相似文献   

10.
We investigated the pre-electrospray ionisation (pre-ESI) factors; analyte concentration (1-2500 ng/mL), concentration of formic acid (FA) in the mobile phase (0.01, 0.1 and 1%), concentration of the organic modifier (acetonitrile 50-90%) and flow rate (<10 μL/min) on the number of multiple protonations and ESI response for two neuropeptides (of ~3.3 kDa molecular mass); calcitonin gene-related peptide (CGRP) and vasoactive intestinal peptide (VIP). A pH of 3.23 (0.1% FA), nano-flow rate range of 350-750 nL/min and acetonitrile concentration of 50% were optimum for both neuropeptides where the highest intensities were observed. An inverse relationship between decreasing flow rate and ESI response for both peptides was also observed. The quadruply charged ([M+4H](4+)) ion was dominant for CGRP at all analyte concentrations, and also for VIP, but only at the higher analyte concentrations (250-2500 ng/mL); none of the [M+4H](4+), [M+5H](5+) or [M+6H](6+) ions were dominant at the lower concentrations. Linear correlations were obtained for the protonated states and ESI response at analyte concentrations (1-750 ng/mL). Acetonitrile concentration was critical; severe ion suppression was observed for VIP when the concentration of acetonitrile was ≥60%. Ion suppression was also observed for both peptides in an equimolar mixture, with the extent of ion suppression more severe for VIP. Our study concludes that it is important to monitor several protonated species when a single protonated state does not dominate, especially during label-free peptide quantitations.  相似文献   

11.
The negative ion electrospray ionization (ESI) mass spectra of a series of dicarboxylic acids, a pair of isomeric (cis/trans) dicarboxylic acids and two pairs of isomeric (positional) substituted benzoic acids, including a pair of hydroxybenzoic acids, were recorded in the presence of halide ions (F(-), Cl(-), Br(-) and I(-)). The ESI mass spectra contained [M--H](-) and [M+X](-) ions, and formation of these ions is found to be characteristic of both the analyte and the halide ion used. The analytes showed a greater tendency to form adduct ions with Cl(-) under ESI conditions compared with the other halide ions used. The isomeric compounds yielded distinct spectra by which the isomers could be easily distinguished. The collision-induced dissociation mass spectra of [M+X](-) ions reflected the gas-phase basicities of both the halide ion and [M--H](-) ion of the analyte. However, the relative ordering of gas-phase basicities of all analyte [M--H](-) and halide ions could not account for the dominance of chloride ion adducts in ESI mass spectra of the analytes mixed with equimolar quantities of the four halides.  相似文献   

12.
A comparative study of electrospray and laser spray has been undertaken from various aspects. In general, laser spray gave stronger ion signals than electrospray, for solutions with the sample concentration of 相似文献   

13.
Studies of yessotoxin involving confirmation of fragmentation processes using a high-resolution orthogonal hybrid quadrupole time-of-flight (QqTOF) mass spectrometer and nanoLC hybrid quadrupole TOF MS have been undertaken. The fragmentation of YTX was studied in negative mode using nano electrospray (nanoESI) QqTOF mass spectrometry. Three major molecule-related ions were observed, [M - 2Na + H]-, [M - Na]- and [M - 2Na]2-, and fragmentation of the latter was studied in detail. This showed that product ions were formed as a consequence of charge-remote fragmentation processes that included a strong directional cleavage of the polyether rings of YTX. NanoLC coupled with QqTOF MS was used to determine YTX in small samples of the phytoplankton, Protoceratium reticulatum, by monitoring the [M - 2Na]2- ion at m/z 570. A PepMap C18 nanoLC column (75 microm x 10 cm, 100 A, 3 microm, LC Packings) was used and the solvent was acetonitrile/water (90:10 (v/v)) containing 1 mM ammonium acetate, at a flow rate of 400 nl/min, for 30 min. Calibrations obtained with YTX standard solutions were linear over four orders of magnitude, 0.75-250 ng/ml; r2 = 0.9947-0.9998. Phytoplankton cells (ca. 100-300) were picked, extracted with methanol/water (40:60), and the YTX concentration was determined over the range 0.011-0.020 ng/cell. The detection limit (3 x S/N) of this method was ca. 0.5 pg YTX on-column.  相似文献   

14.
A detailed procedure for the analysis of four beta-blockers, acebutolol, labetalol, metoprolol and propranolol, in human plasma by high-performance liquid chromatography (LC)-tandem mass spectrometry (MS-MS) using an MSpak GF column, which enables direct injection of crude plasma samples, is presented. Protein and/or macromolecule matrix compounds were eluted first from the column, while the drugs were retained on the polymer stationary phase of the MSpak GF column. The analytes retained on the column were then eluted into an acetonitrile-rich mobile phase using a gradient separation technique. All drugs showed base peak ions due to [M + H]+ ions by LC-MS with positive ion electrospray ionization, and the product ions were produced from each [M + H]+ ion by LC-MS-MS. Quantification was performed by selected reaction monitoring. The recoveries of the four beta-blockers spiked into plasma were 73.5-89.9%. The regression equations for all compounds showed excellent linearity in the range 10-1000 ng/mL of plasma, with the exception of propranolol (10-800 ng/mL). The limits of detection and quantification for each drug were 1-3 and 10 ng/mL, respectively, of plasma. The intra- and inter-day coefficients of variation for all drugs in plasma were not greater than 10.9%.  相似文献   

15.
A novel analytical protocol for the determination of free fatty acids (FFAs; saturated, monounsaturated and polyunsaturated) in shellfish using electrospray ionisation and liquid chromatography-mass spectrometry (LC-MS) is described. Total lipids were extracted from four commercially important shellfish species using chloroform-methanol in a modification of the traditionally used Bligh and Dyer method. FFAs were recovered from lipidic shellfish extracts by solid-phase extraction (SPE) on an aminopropyl-silica column using a 98:2 v/v diethyl ether (DEE)-acetic acid solution. Ether extracts containing the FFAs were evaporated and reconstituted in 70:30 v/v methanol-chloroform before analysis by LC-MS. The limits of quantification (LOQs) of the method ranged from 60 to 560 microgg(-1) wet weight depending on the different FFAs determined with selected ion monitoring (SIM). Results demonstrate that LC-MS is well suited for identification and quantification of FFAs in shellfish and negates the use of sample derivatisation required in gas chromatographic analysis.  相似文献   

16.
The most intense ion(s) in negative ion fast atom bombardment (FAB) mass spectra of 2- and 4-benzaldehyde sulfonic acid (BSA) in glycerol or 3-nitrobenzyl alcohol matrix corresponds to a covalent association of the analyte with one or two matrix molecules accompanied by the elimination of a molecule of water. The molecular ion [M - H](-), however, is of low abundance. The identity of the resulting ions [M + nA - H(2)O - H](-) (where M is the analyte and A is the matrix) was confirmed by exact mass measurement using the peak matching technique. These covalent matrix-analyte complexes were not observed when the sulfonic acid functionality in BSA was substituted with COOH, NO(2), and OH or when the sulfonic acid was in salt form. These observations indicate that the free sulfonic acid group in BSA is responsible for the covalent adduct formation. To our knowledge, analyte-matrix covalent association in negative ion FAB spectra of BSA has not been reported previously.  相似文献   

17.
A rapid multiple toxin method based on liquid chromatography with mass spectrometry (LC/MS) was developed for the detection of okadaic acid (OA), dinophysistoxin-1 (DTX-1), DTX-2, yessotoxin (YTX), homoYTX, 45-hydroxy-YTX, 45-hydroxyhomo-YTX, pectenotoxin-1 (PTX-1), PTX-2, azaspiracid-1 (AZA-1), AZA-2, and AZA-3. Toxins were extracted from shellfish using methanol-water (80%, v/v) and were analyzed using a C8 reversed-phase column with a 5 mM ammonium acetate-acetonitrile mobile phase under gradient conditions. The method was validated for the quantitative detection of OA, YTX, PTX-2, and AZA-1 in 4 species (mussels, Mytilus edulis; cockles, Cerastoderma edule; oysters, Crassostrea gigas; king scallop, Pecten maximus) of shellfish obtained from United Kingdom (UK) waters. Matrix interferences in the determination of the toxins in these species were investigated. The validated linear range of the method was 13-250 microg/kg for OA, PTX-2, and AZA-1 and 100-400 microg/kg for YTX. Recovery and precision ranged between 72-120 and 1-22%, respectively, over a fortification range of 40-160 microg/kg for OA, PTX-2, and AZA-1 and 100-400 microg/kg for YTX. The limit of detection, reproducibility, and repeatability of analysis showed acceptable performance characteristics. A further LC/MS method using an alkaline hydrolysis step was assessed for the detection of OA, DTX-1, and DTX-2 in their esterified forms. In combination with the LC/MS multiple toxin method, this allows detection of all toxin groups described in Commission Decision 2002/225/EC.  相似文献   

18.
Nanoflow liquid chromatography-electrospray ionization tandem-mass spectrometry (nanoLC-ESI-MS-MS) was applied for the characterization of intact phosphatidylcholine (PC) lipid molecules using a homemade reversed phase capillary column with a pulled tip for direct ESI at positive ion mode. Prior to the analytical column, a short capillary trapping column was utilized for on-line pre-concentration via microcross connection. Separation of intact phosphatidylcholines in the nanoflow LC column was carried out using a binary gradient elution method at 300 nL/min. The structures of the eluted PC components were determined by analysis of the typical fragment ions of PC molecules obtained from collision-induced dissociation (CID) after each precursor scan in mass spectrometry. In the current study, nanoflow LC-ESI-MS-MS analysis of PC molecules demonstrated the ability to obtain clear structural information, such as alkyl chain lengths and the degree of unsaturation with a protonated molecule ([M + H]+) and its characteristic fragment ions ([M + H-RCH2COOH]+, [M + H-RCH=C=O]+, and [M + H-184]+). Results from the nanoflow LC-ESI-MS experiment showed the limit of detection at 3.5 fmol for the 14:0/14:0-PC standard. This technique then was applied to intact PC extracts from soybean, bovine brain, and liver without derivatization and resulted in the identification of 28, 25, and 39 phosphatidylcholines, respectively. The LC-MS-MS method has been shown to be useful for the analysis of low concentration PC molecules in biological samples.  相似文献   

19.
This paper describes a new method for sensitive, specific and direct determination of domoic acid (DA), the causative toxin of amnesic shellfish poisoning (ASP) syndrome, in shellfish. It is based on combination of hydrophilic interaction liquid chromatography with mass spectrometry (HILIC/MS). The high percentage of organic modifier in the mobile phase and the omission of ion-pairing reagents, both favoured in HILIC, result in enhanced detection limits with MS detection. The new method was set up either on an ionspray ion trap MS instrument operating in MS and MS/MS scanning acquisition modes, or on a turboionspray triple-quadrupole MS system operating in selected ion monitoring (SIM) and multiple reaction monitoring (MRM) acquisition modes. Positive and negative ion experiments were performed. MRM experiments are recommended for screening contaminated shellfish tissue and for quantitative analyses due to highest sensitivity and selectivity. The minimum detection levels for the toxin in tissue were found to be 63 and 190 ng/g in positive and negative MRM experiments, respectively, which are well below the regulatory limit for DA in tissue (20 microg/g). Application to shellfish samples collected in the Adriatic Sea (Italy) in the period 2000-2004 demonstrated for the first time in Italy the presence of DA as a new toxin that has entered the Adriatic Mytilus galloprovincialis toxin profile.  相似文献   

20.
A specific and sensitive method based on tandem mass spectrometry with on-line high-performance liquid chromatography using atmospheric pressure chemical ionisation (LC–APCI-MS–MS) for the quantitation of anabolic hormone residues (17β-19-nortestosterone, 17β-testosterone and progesterone) and their major metabolites (17-19-nortestosterone and 17-testosterone) in bovine serum and urine is reported. [2H2]17β-Testosterone was used as internal standard. The analytes were extracted from urine (following enzymatic hydrolysis) and serum samples by liquid–liquid extraction and purified by C18 solid-phase extraction. Ionisation was performed in a heated nebulizer interface operating in the positive ion mode, where only the protonated molecule, [M+H]+, was generated for each analyte. This served as precursor ion for collision-induced dissociation and two diagnostic product ions for each analyte were identified for the unambiguous hormone confirmation by selected reaction monitoring LC–MS–MS. The overall inter-day precision (relative standard deviation) ranged from 6.37 to 2.10% and from 6.25 to 2.01%, for the bovine serum and urine samples, respectively, while the inter-day accuracy (relative error) ranged from −5.90 to −3.18% and from −6.40 to −2.97%, for the bovine serum and urine samples, respectively. The limit of quantitation of the method was 0.1 ng/ml for all the hormones in bovine serum and urine. On account of its high sensitivity and specificity the method has been successfully used to confirm illegal hormone administration for regulatory purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号