首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this paper, zeolitic imidazolate framework-8 modified by the ethanediamine (NH2-ZIF-8) was employed for adsorbing Au (III) and Ag(I) from aqueous solutions. The adsorption capacities of NH2-ZIF-8 towards Au (III) and Ag(I) were found to be significantly affected by the pH values of the solution. The adsorption kinetics studies show that NH2-ZIF-8 presents a fast adsorption property towards metals, attaining 93% of adsorption equilibrium uptake for Au (III) within the first 30 min. This phenomenon can be ascribed to the coordination interaction between the amino group and Au (III). The thermodynamic data suggest that the adsorption of NH2-ZIF-8 towards Au (III) is endothermic process, while that for Ag(I) is exothermic. The maximum adsorption capacities of NH2-ZIF-8 toward Au (III) and Ag(I) can be achieved to 357 mg·g−1 and 222.25 mg·g−1, respectively. The metal ions interference results show that Cu (II) and Ni (II) hardly have no interference on Au (III) adsorption in e-waste containing 1500 mg·l−1 Cu (II),100 mg·l−1 Ni (II) and 10 mg·l−1 Au (III); while for Ag(I), Cd (II) and Zn (II) have little interference on Ag(I) adsorption in the hybrid solutions containing Ag(I), Ni (II), Cd (II) and Zn (II) with equal concentration (50 mg·l−1), but Ni (II) interference most. The XPS study shows that partial Au (III) was reduced to Au(I), and that Ag(I) was completely reduced to Ag(0) during the adsorption process. The abundant of active sites of NH2-ZIF-8 containing C=N, N-H, and Zn-OH groups play a key role in the adsorption of Au (III) and Ag(I). In addition, electrostatic interaction can be responsible for the adsorption of Au (III) by NH2-ZIF-8. The regeneration experiments results show that the adsorption capacities of NH2-ZIF-8 towards Au (III) and Ag(I) can maintain after three cycles. This work provides a reliable method to improve the adsorption kinetics for metal ions.  相似文献   

2.
Owing to their s2p5 electronic configuration, halogen atoms are highly electronegative and constitute the anionic components of salts. Whereas clusters that contain no halogen atoms, such as AlH4, mimic the chemistry of halogens and readily form salts (e.g., Na+(AlH4)?), clusters that are solely composed of metal atoms and yet behave in the same manner as a halogen are rare. Because coinage‐metal atoms (Cu, Ag, and Au) only have one valence electron in their outermost electronic shell, as in H, we examined the possibility that, on interacting with Al, in particular as AlX4 (X=Cu, Ag, Au), these metal atoms may exhibit halogen‐like properties. By using density functional theory, we show that AlAu4 not only mimics the chemistry of halogens, but also, with a vertical detachment energy (VDE) of 3.98 eV in its anionic form, is a superhalogen. Similarly, analogous to XHX superhalogens (X=F, Cl, Br), XAuX species with VDEs of 4.65, 4.50, and 4.34 eV in their anionic form, respectively, also form superhalogens. In addition, Au can also form hyperhalogens, a recently discovered species that show electron affinities (EAs) that are even higher than those of their corresponding superhalogen building blocks. For example, the VDEs of M(AlAu4)2? (M=Na and K) and anionic (FAuF)? Au? (FAuF) range from 4.06 to 5.70 eV. Au‐based superhalogen anions, such as AlAu4? and AuF2?, have the additional advantage that they exhibit wider optical absorption ranges than their H‐based analogues, AlH4? and HF2?. Because of the catalytic properties and the biocompatibility of Au, Au‐based superhalogens may be multifunctional. However, similar studies that were carried out for Cu and Ag atoms have shown that, unlike AlAu4, AlX4 (X=Cu, Ag) clusters are not superhalogens, a property that can be attributed to the large EA of the Au atom.  相似文献   

3.
The self‐assembly of cyano‐functionalized triarylamine derivatives on Cu(111), Ag(111) and Au(111) was studied by means of scanning tunnelling microscopy, low‐energy electron diffraction, X‐ray photoelectron spectroscopy and density functional theory calculations. Different bonding motifs, such as antiparallel dipolar coupling, hydrogen bonding and metal coordination, were observed. Whereas on Ag(111) only one hexagonally close‐packed pattern stabilized by hydrogen bonding is observed, on Au(111) two different partially porous phases are present at submonolayer coverage, stabilized by dipolar coupling, hydrogen bonding and metal coordination. In contrast to the self‐assembly on Ag(111) and Au(111), for which large islands are formed, on Cu(111), only small patches of hexagonally close‐packed networks stabilized by metal coordination and areas of disordered molecules are found. The significant variety in the molecular self‐assembly of the cyano‐functionalized triarylamine derivatives on these coinage metal surfaces is explained by differences in molecular mobility and the subtle interplay between intermolecular and molecule–substrate interactions.  相似文献   

4.
We have developed a chemical method to intercalate a variety of zerovalent metal atoms into two-dimensional (2D) layered Bi(2)Se(3) chalcogenide nanoribbons. We use a chemical reaction, such as a disproportionation redox reaction, to generate dilute zerovalent metal atoms in a refluxing solution, which intercalate into the layered Bi(2)Se(3) structure. The zerovalent nature of the intercalant allows superstoichiometric intercalation of metal atoms such as Ag, Au, Co, Cu, Fe, In, Ni, and Sn. We foresee the impact of this methodology in establishing novel fundamental physical behaviors and in possible energy applications.  相似文献   

5.
硼烯是由硼原子构成的单原子层厚的二维材料,具有丰富的化学和物理性质。本文集中介绍近年来硼烯在合成方面的理论与实验研究进展,重点分析基底、生长温度、生长前驱物等因素对硼成核选择性的影响,探讨能够促进硼烯成核的潜在方法。进一步将分析硼烯生长机制及理论研究方法,以此展望通过在基底上化学气相沉积合成硼烯的可能途径。本文旨在促进大面积、高质量硼烯样品的制备以推动硼烯的实际应用。  相似文献   

6.
The surface chemistry, induced by thermal and non-thermal methods, of SO2 on metal substrates is reviewed. The substrate temperature during dosing is important; regardless of metal, adsorption is dissociative at 300 K and molecular at 100 K. On Ni, Pd, and Pt, molecular adsorption occurs through the S and one O atom, and the molecular plane is perpendicular to the surface. However, on Ag and Cu, adsorption occurs only through the S with the molecular plane perpendicular to the surface. The differences can be attributed to the structure of the metal's molecular orbitals and their interactions with the SO2 orbitals. Upon heating, SO2 dissociates on all transition metal surfaces with the exception of Ag, Au, and Cu, where only molecular desorption occurs. On Pt, Fe, and Pd, additional reactions are observed between SO2 and its dissociation products. The nonthermal reactions induced by photons and electrons for monolayer coverages of SO2 on Ag (111) are dominated by molecular desorption. Desorption cross sections for 313 nm photons and 50eV electrons were 2.8 × 10?20 cm2 and ?1 × 10?16 cm2, respectively. Nonthermal excitation mechanisms and quenching processes as well as interesting characteristics of SO2 under irradiation are also reviewed.  相似文献   

7.
The structure of the most stable Me n clusters and Me n OH complexes (Me = Cu, Ag, Au; n = 2–8) was calculated using the density functional theory. The enthalpy and Gibbs energy of the interaction of OH· with metal clusters were calculated. It was shown that the hydroxyl radical is predominantly adsorbed into the bridge position on the metal IB clusters. During the adsorption of the hydroxyl radical, the frequency and intensity of the stretching vibrations of the O-H bond increased relative to the corresponding values for the isolated state; the frequency shift changed in the series Ag < Cu < Au.  相似文献   

8.
Hyperhalogens were recently identified as a new class of highly electronagative species which are composed of metals and superhalogens. In this work, high‐level theoretical calculations and photoelectron spectroscopy experiments are systematically conducted to investigate a series of coinage‐metal‐containing hyperhalogen anions, Cu(BO2)2?, Ag(BO2)2?, and Au(BO2)2?. The vertical electron detachment energy (VDE) of Ag(BO2)2? is anomalously higher than those of Au(BO2)2? and Cu(BO2)2?. In quantitative agreement with the experiment, high‐level ab initio calculations reveal that spin–orbit coupling (SOC) lowers the VDE of Au(BO2)2? significantly. The sizable magnitude of about 0.5 eV of SOC effect on the VDE of Au(BO2)2? demonstrates that SOC plays an important role in the electronic structure of gold hyperhalogens. This study represents a new paradigm for relativistic electronic structure calculations for the one‐electron‐removal process of ionic AuIL2 complexes, which is characterized by a substantial SOC effect.  相似文献   

9.
We have investigated the structure and electron transport at dichloroethylene-doped metal atomic junctions at low temperatures (20 K) in ultra-high vacuum, using Fe, Ni, Pd, Cu, Ag, and Au. The metal atomic junctions were fabricated using the mechanically controllable break junction technique. After introducing the dichloroethylene (DCE), the conductance behavior of Fe, Ni, and Pd junctions was considerably changed, whereas little change was observed for Cu, Ag, and Au. For the Pd and Cu junctions, a clear peak was observed in their conductance histograms, showing that the single-molecule junction was selectively formed. To investigate the structure of the metal atomic junctions further, their plateau lengths were analyzed. The length analysis revealed that the Au atomic wire was elongated, and the metal atomic wires were formed for the other transition metals: those that do not normally form metal atomic wires without DCE doping, as DCE adsorption stabilized the metal atomic states. There is a strong interaction between DCE and the metals, where DCE supports the formation of the metal atomic wire for Fe, Ni, and Pd.  相似文献   

10.
In this work, we have used the static molecular simulations combined with an interatomic potential derived from the embedded‐atom method to study the adsorption and hetero‐diffusion on the (111) surface of Cu, Ag, and Au adatoms by using LAMMPS code. The investigation is performed for six heterogeneous systems such as Ag/Au(111), Ag/Cu(111), Au/Ag(111), Au/Cu(111), Cu/Ag(111), and Cu/Au(111). First, we have investigated the relaxation trends and the bond lengths of the atoms in the systems. The calculation results show that, the top layer spacing between the first and second layers of the Au(111), Ag(111), and Cu(111) substrates is contracted. This contraction is found to be more important in the Au(111) substrate. On the other hand, the strong reduction of the binding length is found in Au/Cu(111) for the different adsorption sites. In addition, the binding, adsorption, and static activation energies for all studied systems were examined. The results indicated that the binding and adsorption energies reached their maximum values in the Au/Cu(111) and Au/Ag(111) systems, respectively. Moreover, the static activation barriers for hopping diffusion on the (111) surfaces are found to be low compared with those found in the (100) and (110) surfaces. Therefore, our calculations showed that the difference in energy between the hcp and fcc sites on the (111) surfaces is very small. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
We demonstrate the multiple plasmonic effect on the photocurrent properties of photoanodes containing Ag or Au nanoparticles (NPs) loaded onto titanium dioxide film (Ag–TiO2 or Au–TiO2) on Au grating surfaces. Ag–TiO2 or Au–TiO2 nanocomposite particles are prepared by a flame spray pyrolysis route. The structures and morphologies of the prepared products are characterized by high‐resolution transmission electron microscopy. The Ag–TiO2 or Au–TiO2 composite NPs are deposited by spin coating onto the Au grating surfaces. The photoanode electrode is a layered structure of blu‐ray disc‐recordable grating substrate/Au/Ag (or Au)–TiO2/dye/electrolyte/indium‐tin oxide. The plasmonic effect is induced when Ag or Au NPs are located within the propagating surface plasmon (SP) field on the Au grating surface. The short‐circuit photocurrent is increased by exciting the grating‐coupled propagating SP on the Au gratings and is further enhanced by positioning the Ag or Au NPs within the grating‐coupled SP field. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A comparative study of the homoleptic [M(CF3)4]? complexes of all three coinage metals (M=Cu, Ag, Au) reveals that homolytic M?C bond cleavage is favoured in every case upon excitation in the gas phase (CID‐MS2). Homolysis also occurs in solution by photochemical excitation. Transfer of the photogenerated CF3. radicals to both aryl and alkyl carbon atoms was also confirmed. The observed behaviour was rationalized by considering the electronic structure of the involved species, which all show ligand‐field inversion. Moreover, the homolytic pathway constitutes experimental evidence for the marked covalent character of the M?C bond. The relative stability of these M?C bonds was evaluated by energy‐resolved mass spectrometry (ERMS) and follows the order Cu<Ag?Au. The qualitatively similar and rather uniform behaviour experimentally observed for all three coinage metals gives no ground to suggest variation in the metal oxidation state along the group.  相似文献   

13.
The reactions of laser‐ablated Au, Ag, and Cu atoms with F2 in excess argon and neon gave new absorptions in the M? F stretching region of their IR spectra, which were assigned to metal‐fluoride species. For gold, a Ng? AuF bond was identified in mixed neon/argon samples. However, this bonding was much weaker with AgF and CuF. Molecules MF2 and MF3 (M=Au, Ag, Cu) were identified from the isotopic distribution of the Cu and Ag atoms, comparison of the frequencies for three metal fluorides, and theoretical frequency calculations. The AuF5 molecule was characterized by its strongest stretching mode and theoretical frequency calculations. Additional evidence was observed for the formation of the Au2F6 molecule.  相似文献   

14.
We present a systematic density functional theory (DFT) study of the structure and catalytic activity of group 10 (Ni, Pd, Pt) and group 11 (Cu, Ag, Au) coinage metal nanoribbons. These infinite, periodic, quasi‐one‐dimensional structures are conceptually important as intermediates between small metal clusters and close‐packed metal surfaces, and have been shown experimentally to be practical catalysts. We find that nanoribbons have significantly higher predicted H2 dissociation activity than close‐packed metal surfaces consistent with their lower coordination numbers. Computed periodic trends are reasonable, with late transition states and low barriers for H2 dissociation over late group 10 nanoribbons, suggesting their promise as practical catalysts. These trends are consistent with the isolated nanoribbons' computed molecular electrostatic potentials. Calculations also predict nearly linear Brønsted–Evans–Polanyi relationships between the nanoribbons' H2 dissociation energies and dissociation barriers. We also test new meta‐generalized gradient approximation (GGA) and hybrid DFT approximations for H2 dissociation over these nanoribbons. These new functionals increase the (generally underestimated) dissociation barriers predicted by standard GGAs, motivating their continued application in surface chemistry. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The oxygen chemisorption on Ni, Cu and Ag is studied by comparing PE spectra of these systems and SCF-Xα scattered-wave cluster models. Consideration of octahedral clusters M6 (M = Ni, Cu, Ag) shows that they are large enough to reproduce trends in energy differences, such as the width of the d-bands and the distance from the top of the d-bands to the Fermi level, as found in experiment and in bulk energy band calculations. Substrate model clusters for the interaction of oxygen with different metal surfaces are derived from an octahedron by removing one ((100) face) or two adjacent metal atoms ((110) face). Comparing the UPS difference spectrum for O/Ag (110) with several Ag4O cluster models makes it possible to interpret the peaks above the Ag d-band as O-Ag anti-bonding levels. These peaks are caused by O 2p-Ag 4d and O 2p-Ag 5s interaction. The corresponding bonding levels fall in the Ag d-bands and cannot therefore be identified with confidence in the spectra. The decreasing intensity of the oxygen derived peak below the metal d-band in the UPS spectra when going from Ni to Cu to Ag, and the simultaneously increasing O peaks above the d-band correlate with the changes of the localization of the corresponding bonding and anti-bonding levels in the oxygen sphere and the decreasing strength of the chemisorption bond.  相似文献   

16.
Conductive polymeric [NiII(teta)]2+ (teta=C‐meso‐5,5,7,12,12,14‐hexamethyl‐1,4,8,11‐tetra‐azacyclotetradecane) films (poly(Ni)) have been deposited on the surface of glassy carbon (GC), Nafion (Nf) modified GC (GC/Nf) and Nf stabilized Ag and Au nanoparticles (NPs) modified GC (GC/Ag‐Nf and GC/Au‐Nf) electrodes. The cyclic voltammogram of the resulting electrodes, show a well defined redox peak due to oxidation and reduction of poly(Ni) system in 0.1 M NaOH. They show electrocatalytic activity towards the oxidation of glucose. AFM studies reveal the formation of poly(Ni) film on the modified electrodes. Presence of metal NPs increases electron transfer rate and electrocatalytic oxidation current by improving the communication within the Nf and poly(Ni) films. In the presence of metal NPs, 4 fold increase in current for glucose oxidation was observed.  相似文献   

17.
Gold particles supported on tin(IV) oxide (0.2 wt % Au/SnO2) were modified with copper and silver by the multistep photodeposition method. Absorption around λ=550 nm, attributed to surface plasmon resonance (SPR) of Au, gradually shifted to longer wavelengths on modification with Cu and finally reached λ=620 nm at 0.8 wt % Cu. On the other hand, the absorption shifted to shorter wavelength with increasing amount of Ag and reached λ=450 nm at 0.8 wt % Ag. These Cu‐ and Ag‐modified 0.2 wt % Au/SnO2 materials (Cu‐Au/SnO2 and Ag‐Au/SnO2) and 1.0 wt % Au/SnO2 were used for mineralization of formic acid to carbon dioxide in aqueous suspension under irradiation with visible light from a xenon lamp and three kinds of light‐emitting diodes with different wavelengths. The reaction rates for the mineralization of formic acid over these materials depend on the wavelength of light. Apparent quantum efficiencies of Cu‐Au/SnO2, Au/SnO2, and Ag‐Au/SnO2 reached 5.5 % at 625 nm, 5.8 % at 525 nm, and 5.1 % at 450 nm, respectively. These photocatalysts can also be used for selective oxidation of alcohols to corresponding carbonyl compounds in aqueous solution under visible‐light irradiation. Broad responses to visible light in formic acid mineralization and selective alcohol oxidation were achieved when the three materials were used simultaneously.  相似文献   

18.
A theoretical study of monoboronyls of different metals has been carried out. We have chosen Mg as representative of s‐block elements, Al for the p‐block, and Group 11 metals (Cu, Ag, and Au) for the d‐block. Different behaviors are observed: bonding through the oxygen atom is preferred in the case of Al, for all Group 11 monoboronyls bonding through the boron atom prevails and both interactions give rise to almost isoenergetic compounds in the case of Mg. Predictions for the spectroscopic parameters relevant for rotational and vibrational spectroscopy of the different competitive species are provided. Al and Group 11 boronyls have relatively high dissociation energies, whereas Mg boronyl has moderate dissociation energy. The molecular structure of metal boronyls has been rationalized through an analysis of the bonding. The similarities and differences between metal boronyls and their isoelectronic cyanide analogues have been discussed. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
To examine the impact of metal moieties that have different triplet energies on the photoisomerization of B(ppy)Mes2 compounds (ppy=2‐phenyl pyridine, Mes=mesityl), three metal‐functionalized B(ppy)Mes2 compounds, Re‐B , Au‐B , and Pt‐B , have been synthesized and fully characterized. The metal moieties in these three compounds are Re(CO)3(tert‐Bu2bpy)(C?C), Au(PPh3)(C?C), and trans‐Pt(PPh3)2(C?C)2, respectively, which are connected to the ppy chelate through the alkyne linker. Our investigation has established that the ReI unit completely quenches the photoisomerization of the boron unit because of a low‐lying intraligand charge transfer/MLCT triplet state. The AuI unit, albeit with a triplet energy that is much higher than that of B(ppy)Mes2, upon conjugation with the ppy chelate unit, substantially increases the contribution of the π→π* transition, localized on the conjugated chelate backbone in the lowest triplet state, thereby leading to a decrease in the photoisomerization quantum efficiency (QE) of the boron chromophore when excited at 365 nm. At higher excitation energies, the photoisomerization QE of Au‐B is comparable to that of the silyl–alkyne‐functionalized B(ppy)Mes2 ( TIPS‐B ), which was attributable to a triplet‐state‐sensitization effect by the AuI unit. The PtII unit links two B(ppy)Mes2 together in Pt‐B , thereby extending the π‐conjugation through both chelate backbones and leading to a very low QE of the photoisomerization. In addition, only one boron unit in Pt‐B undergoes photoisomerization. The isomerization of the second boron unit is quenched by an intramolecular energy transfer of the excitation energy to the low‐energy absorption band of the isomerized boron unit. TD‐DFT computations and spectroscopic studies of the three metal‐containing boron compounds confirm that the photoisomerization of the B(ppy)Mes2 chromophore proceeds through a triplet photoactive state and that metal units with suitable triplet energies can be used to tune this system.  相似文献   

20.
《Electroanalysis》2018,30(1):84-93
Electrocatalytic reduction of CO2 to formate on carbon based electrodes is known to suffer from low electrochemical reaction activity and product selectivity. Pd/three‐dimensional graphene (Pd/3D‐RGO), In/3D‐RGO and Pd‐In/3D‐RGO for the electrochemical reduction of CO2 were prepared by a mild method that combines chemical and hydrothermal. The metal/3D‐graphenes (metal/3D‐RGO) were characterized by scanning electron microscopy, X‐ray diffraction, transmission electron microscopy and X‐ray photoelectron spectroscopy (XPS). Cyclic voltammetry and the ion chromatography were performed to investigate the electrochemical performance of the metal/3D‐RGO. The morphology and dispersion of metal/3D‐RGO are 3D structure with amount of interconnected pores with metal NPs loading on the fold. And the Pd0.5‐In0.5/3D‐RGO show excellent surface performance with well dispersion and smallest particle size (12.8 nm). XPS reveal that binding energy of Pd (In) NPs is shifted to negative energy, for the metal lose electrons in metal and combine with C, which is demonstrated in the HNO3 experiment. The peak potential of Pd0.5‐In0.5/3D‐RGO is −0.70 V (vs. Ag/AgCl), which is more positive than In1.0/3D‐RGO (−0.73 V) and Pd1.0/3D‐RGO (−1.2 V). The highest faradaic efficiency (85.3 %) happens in Pd0.5‐In0.5/3D‐RGO at −1.6 V vs. Ag/AgCl. In these experiments, the special structure that metal NPs combine with C and the bimetal NPs give a direction to convert CO2 to formate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号