首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The lithium–oxygen battery has the potential to deliver extremely high energy densities; however, the practical use of Li‐O2 batteries has been restricted because of their poor cyclability and low energy efficiency. In this work, we report a novel Li‐O2 battery with high reversibility and good energy efficiency using a soluble catalyst combined with a hierarchical nanoporous air electrode. Through the porous three‐dimensional network of the air electrode, not only lithium ions and oxygen but also soluble catalysts can be rapidly transported, enabling ultra‐efficient electrode reactions and significantly enhanced catalytic activity. The novel Li‐O2 battery, combining an ideal air electrode and a soluble catalyst, can deliver a high reversible capacity (1000 mAh g?1) up to 900 cycles with reduced polarization (about 0.25 V).  相似文献   

2.
The lithium (Li)–air battery has an ultrahigh theoretical specific energy, however, even in pure oxygen (O2), the vulnerability of conventional organic electrolytes and carbon cathodes towards reaction intermediates, especially O2?, and corrosive oxidation and crack/pulverization of Li metal anode lead to poor cycling stability of the Li‐air battery. Even worse, the water and/or CO2 in air bring parasitic reactions and safety issues. Therefore, applying such systems in open‐air environment is challenging. Herein, contrary to previous assertions, we have found that CO2 can improve the stability of both anode and electrolyte, and a high‐performance rechargeable Li–O2/CO2 battery is developed. The CO2 not only facilitates the in situ formation of a passivated protective Li2CO3 film on the Li anode, but also restrains side reactions involving electrolyte and cathode by capturing O2?. Moreover, the Pd/CNT catalyst in the cathode can extend the battery lifespan by effectively tuning the product morphology and catalyzing the decomposition of Li2CO3. The Li–O2/CO2 battery achieves a full discharge capacity of 6628 mAh g?1 and a long life of 715 cycles, which is even better than those of pure Li–O2 batteries.  相似文献   

3.
The lithium (Li)–air battery has an ultrahigh theoretical specific energy, however, even in pure oxygen (O2), the vulnerability of conventional organic electrolytes and carbon cathodes towards reaction intermediates, especially O2, and corrosive oxidation and crack/pulverization of Li metal anode lead to poor cycling stability of the Li-air battery. Even worse, the water and/or CO2 in air bring parasitic reactions and safety issues. Therefore, applying such systems in open-air environment is challenging. Herein, contrary to previous assertions, we have found that CO2 can improve the stability of both anode and electrolyte, and a high-performance rechargeable Li–O2/CO2 battery is developed. The CO2 not only facilitates the in situ formation of a passivated protective Li2CO3 film on the Li anode, but also restrains side reactions involving electrolyte and cathode by capturing O2. Moreover, the Pd/CNT catalyst in the cathode can extend the battery lifespan by effectively tuning the product morphology and catalyzing the decomposition of Li2CO3. The Li–O2/CO2 battery achieves a full discharge capacity of 6628 mAh g−1 and a long life of 715 cycles, which is even better than those of pure Li–O2 batteries.  相似文献   

4.
Lithium–oxygen (Li–O2) batteries have attracted extensive research interest due to their high energy density. Other than Li2O2 (a typical discharge product in Li–O2 batteries), LiOH has proved to be electrochemically active as an alternative product. Here we report a simple strategy to achieve a reversible LiOH-based Li–O2 battery by using a cation additive, sodium ions, to the lithium electrolyte. Without redox mediators in the cell, LiOH is detected as the sole discharge product and it charges at a low charge potential of 3.4 V. A solution-based reaction route is proposed, showing that the competing solvation environment of the catalyst and Li+ leads to LiOH precipitation at the cathode. It is critical to tune the cell chemistry of Li–O2 batteries by designing a simple system to promote LiOH formation/decomposition.  相似文献   

5.
A RuO2 shell was uniformly coated on the surface of core CNTs by a simple sol–gel method, and the resulting composite was used as a catalyst in a rechargeable Li–O2 battery. This core–shell structure can effectively prevent direct contact between the CNT and the discharge product Li2O2, thus avoiding or reducing the formation of Li2CO3, which can induce large polarization and lead to charge failure. The battery showed a high round‐trip efficiency (ca. 79 %), with discharge and charge overpotentials of 0.21 and 0.51 V, respectively, at a current of 100 mA gtotal?1. The battery also exhibited excellent rate and cycling performance.  相似文献   

6.
Direct capture and storage of abundant but intermittent solar energy in electrical energy‐storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar‐driven chargeable lithium–sulfur (Li‐S) battery, in which the capture and storage of solar energy was realized by oxidizing S2? ions to polysulfide ions in aqueous solution with a Pt‐modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g?1 during 2 h photocharging process with a discharge potential of around 2.53 V versus Li+/Li. A specific capacity of 199 mAh g?1, reaching the level of conventional lithium‐ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation.  相似文献   

7.
Polymer–ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high‐performance all‐solid‐state rechargeable batteries. Composite electrolytes have been prepared with cubic‐phase Li7La3Zr2O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high‐resolution solid‐state Li NMR, we are able to track Li ion pathways within LLZO‐PEO composite electrolytes by monitoring the replacement of 7Li in the composite electrolyte by 6Li from the 6Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO‐LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting.  相似文献   

8.
Metal‐air batteries, especially Li‐air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO2 (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li2CO3, making the battery less rechargeable. To make the Li‐CO2 batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO2 reduction and evolution reactions and investigate the electrochemical behavior of Li‐CO2 batteries. Here, we demonstrate a rechargeable Li‐CO2 battery with a high reversibility by using B,N‐codoped holey graphene as a highly efficient catalyst for CO2 reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as‐prepared Li‐CO2 batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long‐term cycling stability over 200 cycles at a high current density of 1.0 A g−1. Our results open up new possibilities for the development of long‐term Li‐air batteries reusable under ambient conditions, and the utilization and storage of CO2.  相似文献   

9.
Li‐O2 batteries are promising candidates for next‐generation high‐energy‐density battery systems. However, the main problems of Li–O2 batteries include the poor rate capability of the cathode and the instability of the Li anode. Herein, an ester‐based liquid additive, 2,2,2‐trichloroethyl chloroformate, was introduced into the conventional electrolyte of a Li–O2 battery. Versatile effects of this additive on the oxygen cathode and the Li metal anode became evident. The Li–O2 battery showed an outstanding rate capability of 2005 mAh g?1 with a remarkably decreased charge potential at a large current density of 1000 mA g?1. The positive effect of the halide ester on the rate capacity is associated with the improved solubility of Li2O2 in the electrolyte and the increased diffusion rate of O2. Furthermore, the ester promotes the formation of a solid–electrolyte interphase layer on the surface of the Li metal, which restrains the loss and volume change of the Li electrode during stripping and plating, thereby achieving a cycling stability over 900 h and a Li capacity utilization of up to 10 mAh cm?2.  相似文献   

10.
Li‐SO2 batteries have a high energy density but bear serious safety problems that are associated with pressurized SO2 and flammable solvents in the system. Herein, a novel ambient Li‐SO2 battery was developed through the introduction of ionic liquid (IL) electrolytes with tailored basicities to solvate SO2 by reversible chemical absorption. By tuning the interactions of ILs with SO2, a high energy density and good discharge performance with operating voltages above 2.8 V were obtained. This strategy based on reversible chemical absorption of SO2 in IL electrolytes enables the development of the next generation of ambient Li‐SO2 batteries.  相似文献   

11.
Aqueous rechargeable batteries have attracted attention owning to their advantages of safety, low cost, and sustainability, while the limited electrochemical stability window (1.23 V) of water leads to their failure in competition with organic-based lithium-ion batteries. Herein, we report an alkali–acid Zn–PbO2 hybrid aqueous battery obtained by coupling an alkaline Zn anode with an acidic PbO2 cathode. It shows the capability to deliver an impressively high open-circuit voltage (Voc) of 3.09 V and an operate voltage of 2.95 V at 5 mA cm−2, thanks to the contribution of expanding the voltage window and the electrochemical neutralization energy from the alkali–acid asymmetric-electrolyte hybrid cell. The hybrid battery can potentially deliver a large area capacity over 2 mAh cm−2 or a high energy density of 252.39 Wh kg−1 and shows almost no fading in area capacity over 250 charge–discharge cycles.  相似文献   

12.
Developing rechargeable Na–CO2 batteries is significant for energy conversion and utilization of CO2. However, the reported batteries in pure CO2 atmosphere are non‐rechargeable with limited discharge capacity of 200 mAh g?1. Herein, we realized the rechargeability of a Na–CO2 battery, with the proposed and demonstrated reversible reaction of 3 CO2+4 Na?2 Na2CO3+C. The battery consists of a Na anode, an ether‐based electrolyte, and a designed cathode with electrolyte‐treated multi‐wall carbon nanotubes, and shows reversible capacity of 60000 mAh g?1 at 1 A g?1 (≈1000 Wh kg?1) and runs for 200 cycles with controlled capacity of 2000 mAh g?1 at charge voltage <3.7 V. The porous structure, high electro‐conductivity, and good wettability of electrolyte to cathode lead to reduced electrochemical polarization of the battery and further result in high performance. Our work provides an alternative approach towards clean recycling and utilization of CO2.  相似文献   

13.
NiCo2O4 nanosheets supported on Ni foam were synthesized by a solvothermal method. A composite of NiCo2O4 nanosheets/Ni as a carbon-free and binder-free air cathode exhibited an initial discharge capacity of 1762 mAh g 1 with a low polarization of 0.96 V at 20 mA g 1 for sodium–air batteries. Na2O2 nanosheets were firstly observed as the discharged product in sodium–air battery. High electrocatalytic activity of NiCo2O4 nanosheets/Ni made it a promising air electrode for rechargeable sodium–air batteries.  相似文献   

14.
Metal–CO2 batteries have attracted much attention owing to their high energy density and use of greenhouse CO2 waste as the energy source. However, the increasing cost of lithium and the low discharge potential of Na–CO2 batteries create obstacles for practical applications of Li/Na–CO2 batteries. Recently, earth-abundant potassium ions have attracted considerable interest as fast ionic charge carriers for electrochemical energy storage. Herein, we report the first K–CO2 battery with a carbon-based metal-free electrocatalyst. The battery shows a higher theoretical discharge potential (E=2.48 V) than that of Na–CO2 batteries (E=2.35 V) and can operate for more than 250 cycles (1500 h) with a cutoff capacity of 300 mA h g−1. Combined DFT calculations and experimental observations revealed a reaction mechanism involving the reversible formation and decomposition of P121/c1-type K2CO3 at the efficient carbon-based catalyst.  相似文献   

15.
Metal–CO2 batteries have attracted much attention owing to their high energy density and use of greenhouse CO2 waste as the energy source. However, the increasing cost of lithium and the low discharge potential of Na–CO2 batteries create obstacles for practical applications of Li/Na–CO2 batteries. Recently, earth‐abundant potassium ions have attracted considerable interest as fast ionic charge carriers for electrochemical energy storage. Herein, we report the first K–CO2 battery with a carbon‐based metal‐free electrocatalyst. The battery shows a higher theoretical discharge potential (E?=2.48 V) than that of Na–CO2 batteries (E?=2.35 V) and can operate for more than 250 cycles (1500 h) with a cutoff capacity of 300 mA h g?1. Combined DFT calculations and experimental observations revealed a reaction mechanism involving the reversible formation and decomposition of P121/c1‐type K2CO3 at the efficient carbon‐based catalyst.  相似文献   

16.
A novel all-solid-state thin-film-type rechargeable lithium-ion battery employing in situ prepared both positive and negative electrode materials is proposed. A lithium-ion conducting solid electrolyte sheet of Li2O–Al2O3–TiO2–P2O5-based glass–ceramic manufactured by OHARA Inc. (OHARA sheet) was used as the solid electrolyte, which was sandwiched by Cu and Mn metal films. The Cu/OHARA sheet/Mn layer became an all-solid-state lithium-ion battery after applying d.c. 16 V to the layer, and the resultant battery operated at 0.3–0.8 V with reversible capacity of 0.45 μAh cm?2. High voltage battery was successfully prepared by applying the d.c. high voltage to a five-series of Cu/OHARA sheet/Mn layer, resulting in all-solid-state battery operating at 1.5–4.0 V. The proposed fabrication process will become a new technology to develop advanced all-solid-state rechargeable lithium-ion batteries.  相似文献   

17.
The rational design of effective bifunctional catalysts with enhanced activity toward oxygen reduction reaction and oxygen evolution reaction is of significance to develop high-performance lithium-oxygen (Li–O2) batteries. Herein, sulfur-doped LaNiO3 nanoparticles are elaborately synthesized, and their catalytic activity toward oxygen redox reactions in Li–O2 batteries is comprehensively studied. As confirmed by the density functional theory calculations and experimental results, the substitution of oxygen atoms by sulfur atoms with lower Pauling electronegativity can enhance the covalent feature of bonds, thus increasing electrical conductivity of catalyst. In addition, abundant oxygen vacancies created after sulfur doping are capable of providing concentrated active sites. Simultaneously, sulfur dopants boost the hybridization between Ni 3d orbital and O 2p orbital and increase the covalency of Ni–O bonds due to the increase of Ni3+ with the near-unity occupancy of the eg orbital, thereby increasing the adsorption strength of oxygen-containing intermediates on the surface. Eventually, lowered reaction energy barriers and accelerated reaction kinetics of oxygen electrode reactions are realized, contributing to the optimized electrochemical performance of Li–O2 battery. The Li–O2 battery based on sulfur-doped LaNiO3 with the optimized S-doping level of 2.89 wt% (marked as S2.89 wt%-LNO) delivers a high specific discharge capacity of 24067 mAh/g, an ultralow overpotential of 0.37 V and extended life of 347 cycles.  相似文献   

18.
The utilization of CO2 in Li‐CO2 batteries is attracting extensive attention. However, the poor rechargeability and low applied current density have remained the Achilles’ heel of this energy device. The gel polymer electrolyte (GPE), which is composed of a polymer matrix filled with tetraglyme‐based liquid electrolyte, was used to fabricate a rechargeable Li‐CO2 battery with a carbon nanotube‐based gas electrode. The discharge product of Li2CO3 formed in the GPE‐based Li‐CO2 battery exhibits a particle‐shaped morphology with poor crystallinity, which is different from the contiguous polymer‐like and crystalline discharge product in conventional Li‐CO2 battery using a liquid electrolyte. Accordingly, the GPE‐based battery shows much improved electrochemical performance. The achieved cycle life (60 cycles) and rate capability (maximum applied current density of 500 mA g−1) are much higher than most of previous reports, which points a new way to develop high‐performance Li‐CO2 batteries.  相似文献   

19.
A new super‐concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra‐high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li‐ion cell based on LiMn2O4 and carbon‐coated TiO2 delivered the unprecedented energy density of 100 Wh kg?1 for rechargeable aqueous Li‐ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the “water‐in‐salt” electrolyte further pushed the energy densities of aqueous Li‐ion cells closer to those of the state‐of‐the‐art Li‐ion batteries.  相似文献   

20.
A paraffin phase-change measurement method for the heat generation of spirally wound cylindrical Li/SOCl2 and Li/SO2 batteries at different ambient temperatures and discharge currents is proposed. The electrical and thermal insulations of the measurement system have been greatly improved, and the accuracy of the measurement system is 4.6 % based on calibration experiments. Compared with accelerated rate calorimetry, isothermal microcalorimetry, and radiation calorimetry methods, the phase-change measurement method is simpler, but with a high accuracy. The experimental results reveal that the heat generation of the batteries during discharge is weakly dependent on the ambient temperature in the range of 38–50 °C, but strongly affected by the discharge current. As the discharge current increases, the heat generated by the Li/SOCl2 and Li/SO2 batteries increases as a quadratic polynomial function. The Li/SO2 battery generates more heat than the Li/SOCl2 battery at the same discharge current, which is demonstrated by the qualitative analysis of the internal resistance. Furthermore, the phase-change measurement method for heat generation has a strong universality, and can be applicable for heat generation measurement of various battery types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号