首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
β-Carotene is a very important molecule for human health. It finds a large application in the food industry, especially for the development of functional foods and dietary supplements. However, β-carotene is an unstable compound and is sensitive to light, temperature, and oxygen. To overcome those limitations, various delivery systems were developed. The inclusion of β-carotene by cyclodextrin aggregates is attractive due to non-toxicity, low hygroscopicity, stability, and the inexpensiveness of cyclodextrins. In this study, β-carotene/2-hydroxypropyl-β-cyclodextrin aggregates were prepared based on the procedure of the addition of β-carotene in an organic solvent to the hot water dispersion of 2-hydroxypropyl-β-cyclodextrin and the following instant evaporation of the organic solvent. The best conditions for the aggregate preparation were found to be as follows: 25% concentration of 2-hydroxypropyl-β-cyclodextrin in water, 65 °C temperature, and acetone for β-carotene dissolution. The efficiency of entrapping was equal to 88%. The procedure is attractive due to the short time of the aggregate preparation.  相似文献   

2.
Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer''s disease (AD), type II diabetes (T2D), Parkinson''s disease (PD), and medullary thyroid carcinoma (MTC). Due to the multifactorial nature of amyloid diseases, single-target drugs and treatments have mostly failed to inhibit amyloid aggregation and microbial infection simultaneously, thus leading to marginal benefits for amyloid inhibition and medical treatments. Herein, we proposed and demonstrated a new “anti-amyloid and antimicrobial hypothesis” to discover two host-defense antimicrobial peptides of α-defensins containing β-rich structures (human neutrophil peptide of HNP-1 and rabbit neutrophil peptide of NP-3A), which have demonstrated multi-target, sequence-independent functions to (i) prevent the aggregation and misfolding of different amyloid proteins of amyloid-β (Aβ, associated with AD), human islet amyloid polypeptide (hIAPP, associated with T2D), and human calcitonin (hCT, associated with MTC) at sub-stoichiometric concentrations, (ii) reduce amyloid-induced cell toxicity, and (iii) retain their original antimicrobial activity upon the formation of complexes with amyloid peptides. Further structural analysis showed that the sequence-independent amyloid inhibition function of α-defensins mainly stems from their cross-interactions with amyloid proteins via β-structure interactions. The discovery of antimicrobial peptides containing β-structures to inhibit both microbial infection and amyloid aggregation greatly expands the new therapeutic potential of antimicrobial peptides as multi-target amyloid inhibitors for better understanding pathological causes and treatments of amyloid diseases.

We report a new “anti-amyloid and antimicrobial hypothesis” by discovering host-defense antimicrobial peptides of α-defensins containing β-sheet structures, which possess inhibition functions against amyloid aggregation and microbial infection.  相似文献   

3.
Cortisone is a steroid widely used as an anti-inflammatory drug able to suppress the immune system, thus reducing inflammation and attendant pain and swelling at the site of an injury. Due to its numerous side effects, especially in prolonged and high-dose therapies, the development of the pharmaceutical industry is currently aimed at finding new compounds with similar activities but with minor or no side effects. Biotransformations are an important methodology towards more sustainable industrial processes, according to the principles of “green chemistry”. In this work, the biotransformation of cortisone with Rhodococcus rhodnii DSM 43960 to give two new steroids, i.e., 1,9β,17,21-tetrahydoxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11,20-dione and 1,9β,17,20β,21-pentahydoxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11-one, is reported. These new steroids have been fully characterized.  相似文献   

4.
5.
Beta glucan (β-glucan) has promising bioactive properties. Consequently, the use of β-glucan as a food additive is favored with the dual-purpose potential of increasing the fiber content of food products and enhancing their health properties. Our aim was to evaluate the biological activity of β-glucan (antimicrobial, antitoxic, immunostimulatory, and anticancer) extracted from Saccharomyces cerevisiae using a modified acid-base extraction method. The results demonstrated that a modified acid-base extraction method gives a higher biological efficacy of β-glucan than in the water extraction method. Using 0.5 mg dry weight of acid-base extracted β-glucan (AB extracted) not only succeeded in removing 100% of aflatoxins, but also had a promising antimicrobial activity against multidrug-resistant bacteria, fungi, and yeast, with minimum inhibitory concentrations (MIC) of 0.39 and 0.19 mg/mL in the case of resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, respectively. In addition, AB extract exhibited a positive immunomodulatory effect, mediated through the high induction of TNFα, IL-6, IFN-γ, and IL-2. Moreover, AB extract showed a greater anticancer effect against A549, MDA-MB-232, and HepG-2 cells compared to WI-38 cells, at high concentrations. By studying the cell death mechanism using flow-cytometry, AB extract was shown to induce apoptotic cell death at higher concentrations, as in the case of MDA-MB-231 and HePG-2 cells. In conclusion, the use of a modified AB for β-glucan from Saccharomyces cerevisiae exerted a promising antimicrobial, immunomodulatory efficacy, and anti-cancer potential. Future research should focus on evaluating β-glucan in various biological systems and elucidating the underlying mechanism of action.  相似文献   

6.
Two new ionone glycosides, named frehmaglutoside G (1) and frehmaglutoside H (2), together with six known compounds, rehmapicroside (3), sec-hydroxyaeginetic acid (4), dihydroxy-β-ionone (5), trihydroxy-β-ionone (6), rehmaionoside A (7) and rehmaionoside C (8), were isolated from the 95% EtOH extract of the dried roots of Rehmannia glutinosa Libosch. Their structures were determined on the basis of extensive spectroscopic analyses, including HR-ESI-MS, UV, IR, 1D and 2D NMR (1H–1H COSY, HSQC, HMBC and NOESY) methods. The absolute configurations were confirmed via the circular dichroism spectra.  相似文献   

7.
(1) Background: (KLAKLAK)2 is a representative of the antimicrobial peptide group which also shows good anticancer properties. (2) Methods: Herein, we report synthesis using SPPS and characterization by HPLC/MS of a series of shortened analogues of (KLAKLAK)2. They contain single sequence KLAKLAK as C-terminal amides. In addition, substitution of some natural amino acids with unnatural β-Ala and nor-Leu is realized. In addition, these structures are conjugated with second pharmacophore with well proven anticancer properties 1,8-naphthalimide or caffeic acid. Cytotoxicity, antiproliferative effect and antimicrobial activity of newly synthesized structures were studied. (3) Results: The obtained experimental results reveal significant selective index for substances with common chemical structure KLβAKLβAK-NH2. The antibacterial properties of newly synthesized analogues at two different concentrations 10 μM and 20 μM, were tested against Gram-negative microorganisms Escherichia coli K12 407. Only two of the studied compounds KLAKLAK-NH2 and the one conjugated with second pharmacophore 1,8-naphthalimide and unnatural amino acid nor-Leu showed moderate activity against tested strains at concentration of 20 μM. (4) Conclusions: The obtained results reveal that the introducing of 1,8-naphthalimideGly- and Caf- increase the cytotoxicity and antiproliferative activity of the peptides but not their selectivity. Only two compounds KLAKLAK-NH2 and 1,8-naphthalimideGKnLAKnLAK-NH2 show moderate activity against Escherichia coli K12 at low concentration of 20 μM.  相似文献   

8.
Clove (Syzygium aromaticum L. Myrtaceae) is an aromatic plant widely cultivated in tropical and subtropical countries, rich in volatile compounds and antioxidants such as eugenol, β-caryophyllene, and α-humulene. Clove essential oil has received considerable interest due to its wide application in the perfume, cosmetic, health, medical, flavoring, and food industries. Clove essential oil has biological activity relevant to human health, including antimicrobial, antioxidant, and insecticidal activity. The impacts of the extraction method (hydrodistillation, steam distillation, ultrasound-assisted extraction, microwave-assisted extraction, cold pressing, and supercritical fluid extraction) on the concentration of the main volatile compounds in clove essential oil and organic clove extracts are shown. Eugenol is the major compound, accounting for at least 50%. The remaining 10–40% consists of eugenyl acetate, β-caryophyllene, and α-humulene. The main biological activities reported are summarized. Furthermore, the main applications in clove essential oil in the food industry are presented. This review presents new biological applications beneficial for human health, such as anti-inflammatory, analgesic, anesthetic, antinociceptive, and anticancer activity. This review aims to describe the effects of different methods of extracting clove essential oil on its chemical composition and food applications and the biological activities of interest to human health.  相似文献   

9.
Carotenoids are vital antioxidants for plants and animals. They protect cells from oxidative events and act against the inflammatory process and carcinogenesis. Among the most abundant carotenoids in human and foods is β-carotene. This carotenoid has the highest level of provitamin A activity, as it splits into two molecules of retinol through the actions of the cytosolic enzymes: β-carotene-15,15′-monooxygenase (β-carotene-15,15′-oxygenase 1) and β-carotene-9′,10′-dioxygenase (β-carotene-9′,10′-oxygenase 2). The literature supports the idea that β-carotene acts against type 2 diabetes mellitus, cardiovascular diseases, obesity, and metabolic syndrome. Due to the many processes involved in β-carotene biosynthesis and metabolic function, little is known about such components, since many mechanisms have not yet been fully elucidated. Therefore, our study concisely described the relationships between the consumption of carotenoids, with emphasis on β-carotene, and obesity and type 2 diabetes mellitus and its associated parameters in order to understand the preventive role of carotenoids better and encourage their consumption.  相似文献   

10.
根据活性亚结构拼接原理,通过紫罗兰酮与(取代)苯甲醛反应合成了紫罗兰酮基双查尔酮,然后经与氨基硫脲缩合得到一系列未见报道的新型含紫罗兰酮、查尔酮及氨基硫脲3种优势结构单元的杂化体,它们的化学结构经傅里叶变换红外光谱(FT-IR)、核磁共振波谱(~1H NMR、~(13)C NMR)、元素分析及质谱(MS)等测试技术所证实。采用溴化噻唑蓝四氮唑(MTT)法初步测定其体外抗肿瘤活性(乳腺癌细胞(MCF-7),肝癌细胞(Hep G2),肺癌细胞(A549)),结果表明,对于不同类型的肿瘤细胞,化合物展现较好的增殖抑制活性。尤其是化合物3a与3b对MCF-7细胞展现较强的抗增殖活性,半数致死量(IC_(50))值分别为10.83和7.62μmol/L,化合物3e对A549细胞显示一定的增殖抑制活性效果(IC_(50)值为13.36μmol/L),化合物3f对Hep G2细胞表现了高效的抗增殖活性(IC_(50)值为8.55μmol/L)。目标物的抗增殖活性与紫罗兰酮结构及查尔酮环上不同电子效应的取代基有关。  相似文献   

11.
Matrix metalloproteinases (MMPs), key molecules of cancer invasion and metastasis, degrade the extracellular matrix and cell–cell adhesion molecules. MMP-10 plays a crucial role in Helicobacter pylori-induced cell-invasion. The mitogen-activated protein kinase (MAPK) signaling pathway, which activates activator protein-1 (AP-1), is known to mediate MMP expression. Infection with H. pylori, a Gram-negative bacterium, is associated with gastric cancer development. A toxic factor induced by H. pylori infection is reactive oxygen species (ROS), which activate MAPK signaling in gastric epithelial cells. Peroxisome proliferator-activated receptor γ (PPAR-γ) mediates the expression of antioxidant enzymes including catalase. β-Carotene, a red-orange pigment, exerts antioxidant and anti-inflammatory properties. We aimed to investigate whether β-carotene inhibits H. pylori-induced MMP expression and cell invasion in gastric epithelial AGS (gastric adenocarcinoma) cells. We found that H. pylori induced MMP-10 expression and increased cell invasion via the activation of MAPKs and AP-1 in gastric epithelial cells. Specific inhibitors of MAPKs suppressed H. pylori-induced MMP-10 expression, suggesting that H. pylori induces MMP-10 expression through MAPKs. β-Carotene inhibited the H. pylori-induced activation of MAPKs and AP-1, expression of MMP-10, and cell invasion. Additionally, it promoted the expression of PPAR-γ and catalase, which reduced ROS levels in H. pylori-infected cells. In conclusion, β-carotene exerts an inhibitory effect on MAPK-mediated MMP-10 expression and cell invasion by increasing PPAR-γ-mediated catalase expression and reducing ROS levels in H. pylori-infected gastric epithelial cells.  相似文献   

12.
We previously reported that lipopolysaccharide (LPS) challenge caused microglial-mediated neuroinflammation and sickness behavior that was amplified in aged mice. As α7 nAChRs are implicated in the “Cholinergic anti-inflammatory pathway”, we aimed to determine how α7 nAChR stimulation modulates microglial phenotype in an LPS-induced neuroinflammation model in adult and aged mice. For this, BALB/c mice were injected intraperitoneally with LPS (0.33 mg/kg) and treated with the α7 nAChR agonist PNU282987, using different administration protocols. LPS challenge reduced body weight and induced lethargy and social withdrawal in adult mice. Peripheral (intraperitoneal) co-administration of the α7 nAChR agonist PNU282987 with LPS, attenuated body weight loss and sickness behavior associated with LPS challenge in adult mice, and reduced microglial activation with suppression of IL-1β and TNFα mRNA levels. Furthermore, central (intracerebroventricular) administration of the α7 nAChR agonist, even 2 h after LPS injection, attenuated the decrease in social exploratory behavior and microglial activation induced by peripheral administration of LPS, although this recovery was not achieved if activation of α7 nAChRs was performed peripherally. Finally, we observed that the positive results of central activation of α7 nAChRs were lost in aged mice. In conclusion, we provide evidence that stimulation of α7 nAChR signaling reduces microglial activation in an in vivo LPS-based model, but this cholinergic-dependent regulation seems to be dysfunctional in microglia of aged mice.  相似文献   

13.
(1) Background: Peptides are good candidates for anticancer drugs due to their natural existence in the body and lack of secondary effects. (KLAKLAK)2 is an antimicrobial peptide that also shows good anticancer properties. (2) Methods: The Solid Phase Peptide Synthesis (Fmoc-strategy) was used for the synthesis of target molecules, analogs of (KLAKLAK)2-NH2. The purity of all compounds was monitored by HPLC, and their structures were proven using mass spectrometry. Cytotoxicity and antiproliferative effects were studied using 3T3 NRU and MTT tests, respectively. For determination of antimicrobial activity, the disc-diffusion method was used. Hydrolytic stability at three pH values, which mimic the physiological pH in the body, was investigated by means of the HPLC technique. (3) Results: A good selective index against MCF-7 tumor cell lines, combined with good cytotoxicity and antiproliferative properties, was revealed for conjugates NphtG-(KLAKLAK)2-NH2 and Caf-(KLAKLAK)2-NH2. The same compounds showed very good antifungal properties and complete hydrolytic stability for 72 h. The compound Caf-(KLβ-AKLβ-AK)2-NH2 containing β-Ala in its structures exhibited good antimicrobial activity against Escherichia coli K12 407 and Bacillus subtilis 3562, in combination with very good antiproliferative and cytotoxic properties, as well as hydrolytic stability. (4) Conclusions: The obtained results reveal that all synthesized conjugates could be useful for medical practice as anticancer or antimicrobial agents.  相似文献   

14.
The development of novel anticancer agents is essential to finding new ways to treat this disease, one of the deadliest diseases. Some marine organisms have proved to be important producers of chemically active compounds with valuable bioactive properties, including anticancer. Thus, the ocean has proved to be a huge source of bioactive compounds, making the discovery and study of these compounds a growing area. In the last few years, several compounds of marine origin, which include algae, corals, and sea urchins, have been isolated, studied, and demonstrated to possess anticancer properties. These compounds, mainly from securamines and sterols families, have been tested for cytotoxic/antiproliferative activity in different cell lines. Bioactive compounds isolated from marine organisms in the past 5 years that have shown anticancer activity, emphasizing the ones that showed the highest cytotoxic activity, such as securamines H and I, cholest-3β,5α,6β-triol, (E)-24-methylcholest-22-ene-3β,5α,6β-triol, 24-methylenecholesta-3β,5α,6β-triol, and 24-methylcholesta-3β,5α,6β-triol, will be discussed in this review. These studies reveal the possibility of new compounds of marine origin being used as new therapeutic agents or as a source of inspiration to develop new therapeutic agents.  相似文献   

15.
Flavonols possess several beneficial bioactivities in vitro and in vivo. In this study, two flavonols galangin and quercetin with or without heat treatment (100 °C for 15–30 min) were assessed for their anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated rat intestinal epithelial (IEC-6) cells and whether the heat treatment caused activity changes. The flavonol dosages of 2.5–20 μmol/L had no cytotoxicity on the cells but could enhance cell viability (especially using 5 μmol/L flavonol dosage). The flavonols could decrease the production of prostaglandin E2 and three pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and simultaneously promote the production of two anti-inflammatory cytokines IL-10 and transforming growth factor-β. The Western-blot results verified that the flavonols could suppress the LPS-induced expression of TLR4 and phosphorylated IκBα and p65, while the molecular docking results also illustrated that the flavonols could bind with TLR4 and NF-κB to yield energy decreases of −(21.9–28.6) kJ/mol. Furthermore, an inhibitor BAY 11-7082 blocked the NF-κB signaling pathway by inhibiting the expression of phosphorylated IκBα/p65 and thus mediated the production of IL-6/IL-10 as the flavonols did, which confirmed the assessed anti-inflammatory effect of the flavonols. Consistently, galangin had higher anti-inflammatory activity than quercetin, while the heated flavonols (especially those with longer heat time) were less active than the unheated counterparts to exert these target anti-inflammatory effects. It is highlighted that the flavonols could antagonize the LPS-caused IEC-6 cells inflammation via suppressing TLR4/NF-κB activation, but heat treatment of the flavonols led to reduced anti-inflammatory efficacy.  相似文献   

16.
Pro-inflammatory cytokines and anti-inflammatory cytokines are important mediators that regulate the inflammatory response in inflammation-related diseases. The aim of this study is to evaluate different New Zealand (NZ)-grown ginseng fractions on the productions of pro-inflammatory and anti-inflammatory cytokines in human monocytic THP-1 cells. Four NZ-grown ginseng fractions, including total ginseng extract (TGE), non-ginsenoside fraction extract (NGE), high-polar ginsenoside fraction extract (HPG), and less-polar ginsenoside fraction extract (LPG), were prepared and the ginsenoside compositions of extracts were analyzed by HPLC using 19 ginsenoside reference standards. The THP-1 cells were pre-treated with different concentrations of TGE, NGE, HPG, and LPG, and were then stimulated with lipopolysaccharide (LPS). The levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and anti-inflammatory cytokines, such as interleukin-10 (IL-10), and transforming growth factor beta-1 (TGF-β1), were determined by enzyme-linked immunosorbent assay (ELISA). TGE at 400 µg/mL significantly inhibited LPS-induced TNF-α and IL-6 productions. NGE did not show any effects on inflammatory secretion except inhibited IL-6 production at a high dose. Furthermore, LPG displayed a stronger effect than HPG on inhibiting pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) productions. Particularly, 100 µg/mL LPG not only significantly inhibited the production of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, but also remarkably enhanced the production of anti-inflammatory cytokine IL-10. NZ-grown ginseng exhibited anti-inflammatory effects in vitro, which is mainly attributed to ginsenoside fractions (particularly less-polar ginsenosides) rather than non-saponin fractions.  相似文献   

17.
Rhus verniciflua Stokes (RVS) has been traditionally used as an herbal remedy to support the digestive functions in traditional Korean medicine. Additionally, the pharmacological effects of RVS, including antioxidative, antimicrobial and anticancer activities, have been well-reported. The genotoxicity of RVS, however, is elusive; thus, we evaluated the genotoxicity of RVS without bark (RVX) for safe application as a resource of functional food or a medical drug. To evaluate the genotoxicity of RVX, we used a bacterial reverse mutation test, chromosomal aberration test and comet assay, according to the “Organization for Economic Co-operation and Development” (OECD) guidelines. Briefly, for the reverse mutation test, samples (5000, 1667, 556, 185, 62 and 0 μg/plate of RVX or the positive control) were treated with a precultured strain (TA98, TA100, TA1535, TA1537 or WP2µvrA) with or without the S9 mix, in which RVX partially induced a reverse mutation in four bacterial strains. From the chromosomal aberration test and comet assay, the RVX samples (556, 185, 62, 20 and 0 μg/mL of RVX or the positive control) were treated in a Chinese hamster ovary cell line (CHO-K1 cells) in the conditions of the S9 mix absent or S9 mix present and in Chang liver cells and C2C12 myoblasts, respectively. No chromosomal aberrations in CHO-K1 or DNA damage in Chang liver cells and C2C12 myoblasts was observed. In conclusion, our results suggest the non-genotoxicity of RVX, which would be helpful as a reference for the safe application of bark-removed Rhus verniciflua Stokes as functional raw materials in the food, cosmetics or pharmaceutical fields.  相似文献   

18.
Osteoporosis is a systemic metabolic bone disorder that is caused by an imbalance in the functions of osteoclasts and osteoblasts and is characterized by excessive bone resorption by osteoclasts. Targeting osteoclast differentiation and bone resorption is considered a good fundamental solution for overcoming bone diseases. β-boswellic acid (βBA) is a natural compound found in Boswellia serrata, which is an active ingredient with anti-inflammatory, anti-rheumatic, and anti-cancer effects. Here, we explored the anti-resorptive effect of βBA on osteoclastogenesis. βBA significantly inhibited the formation of tartrate-resistant acid phosphatase-positive osteoclasts induced by receptor activator of nuclear factor-B ligand (RANKL) and suppressed bone resorption without any cytotoxicity. Interestingly, βBA significantly inhibited the phosphorylation of IκB, Btk, and PLCγ2 and the degradation of IκB. Additionally, βBA strongly inhibited the mRNA and protein expression of c-Fos and NFATc1 induced by RANKL and subsequently attenuated the expression of osteoclast marker genes, such as OC-STAMP, DC-STAMP, β3-integrin, MMP9, ATP6v0d2, and CtsK. These results suggest that βBA is a potential therapeutic candidate for the treatment of excessive osteoclast-induced bone diseases such as osteoporosis.  相似文献   

19.
Double-chain amphiphilic compounds, including surfactants and lipids, have broad significance in applications like personal care and biology. A study on the phase structures and their transitions focusing on dioctadecyldimethylammonium chloride (DODAC), used inter alia in hair conditioners, is presented. The phase behaviour is dominated by two bilayer lamellar phases, Lβ and Lα, with “solid” and “melted” alkyl chains, respectively. In particular, the study is focused on the effect of additives of different polarity on the phase transitions and structures. The main techniques used for investigation were differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS and WAXS). From the WAXS reflections, the distance between the alkyl chains in the bilayers was obtained, and from SAXS, the thicknesses of the surfactant and water layers. The Lα phase was found to have a bilayer structure, generally found for most surfactants; a Lβ phase made up of bilayers with considerable chain tilting and interdigitation was also identified. Depending mainly on the polarity of the additives, their effects on the phase stabilities and structure vary. Compounds like urea have no significant effect, while fatty acids and fatty alcohols have significant effects, but which are quite different depending on the nonpolar part. In most cases, Lβ and Lα phases exist over wide composition ranges; certain additives induce transitions to other phases, which include cubic, reversed hexagonal liquid crystals and bicontinuous liquid phases. For a system containing additives, which induce a significant lowering of the Lβ–Lα transition, we identified the possibility of a triggered phase transition via dilution with water.  相似文献   

20.
Medulloblastoma is a common malignant brain tumor in the pediatric age. The current therapeutics present serious collateral effects. Polyphenols α-mangostin and nordihydroguaiaretic acid (NDGA) exert potent antitumoral activity in different cancer models, although their antitumoral effects have not been described in medulloblastoma cells yet. This study aimed to examine the proapoptotic effects of these polyphenols on human medulloblastoma cells. Medulloblastoma cell line Daoy was incubated with increasing concentrations of α-mangostin or NDGA for 24 h. The cell viability was analyzed using crystal violet and trypan blue dyes. Determination of the glutathione (GSH)/glutathione disulfide (GSSG) ratio and levels of carbonylated proteins was performed to evaluate the oxidative stress. Cell cycle progression and induction of cell death by fluorochrome-couple and TUNEL assays were evaluated using flow cytometry assays. Individual treatments with α-mangostin or NDGA decreased the viability of Daoy cells in a dose-dependent manner, inducing G2/M and S-G2/M cell cycle arrest, respectively. Both polyphenols induced cell death and increased oxidative stress. Very interestingly, α-mangostin showed more potent effects than NDGA. Our results indicate that α-mangostin and NDGA exert important cytostatic and cytotoxic effects in the Daoy cell line. These data highlight the potential usefulness of these compounds as an alternative strategy in medulloblastoma treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号