首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using mass spectrometric technique, the effect of geometrical isomerism on the first and higher appearance energy values for C4H3 +, C4H7 + and C3H,3 + ions obtained from cis-2-butene andtrans-2-butene is reported. The structure in the ionization efficiency curves (studied for 9 eV above threshold) for the same ions obtained from the two isomers is reported and compared. It is believed that at threshold C4H7 + fragment is formed from the two isomers as methallyl ion. For C3H3 + fragment formed from the cw-isomer at threshold the proposed structure is the propargyl ion with ΔHf equal to 279-4 kcal/mole while for that ion obtained fromtransisomer the proposed structure is the allenyl ion with ΔHf equal to 296.6 kcal/mole.  相似文献   

2.
The decay of internal energy selected 1-chloropropyne cations is investigated using the fixed wavelength (He-Iα) photoelectron-photoion coincidence technique. The breakdown curves of the molecular ion and the C3H2Cl+, C3HCl+, CCl+, C3H+3, C3H+3, C3H+ fragment ions are reported. For 1-chloropropyne cations initially formed in their A?2E state it is found that four fragmentation channels compete with a non-dissociative relaxation pathway. The average kinetic energies released on formation of C3H+3 and C3H+3 are deduced from the time-of-flight distributions of these fragment ions measured at different internal energies of the molecular ion. The coincidence data are supplemented by electron impact appearance energies. The obtained decay pattern of 1-chloropropyne cation is compared with the breakdown diagrams reported for the C3H+4 isomers, i.e. allene-, propyne- and cyclopropene cations.  相似文献   

3.
The study of specifically 13C-labelled precursors sheds further light on the gas-phase chemistry of allyl and 2-propenyl cations. It is demonstrated that both species are formed from allyl and 2-propenyl bromide upon 70 eV electron impact ionization without skeletal reorganization. Gas-phase derivatization of the [C3 H5]+ ions with benzene facilitates, as suggested and observed earlier, the distinction of the two isomers using collision-induced dissociation of the Wheland complexes (or isomers thereof). The 13C labelling data clearly demonstrate that 64% of allyl cations survive the derivatization while 36% isomerize to 2-phenylpropyl cations; the latter are also formed via the reaction of 2-propenyl cation with benzene, protonation of α-methylstyrene and water loss from protonated 2-phenyl-2-propanol, respectively. Unimolecular loss of C2H4 from protonated allylbenzene proceeds via two competing reaction channels: one involves heterolysis of 1-phenylpropyl cations (~30%); the major pathway (~70%), however, involves decomposition via propylene benzenium ions.  相似文献   

4.
Oxirane chemical ionization (CI) gives numerous ions, including C2H3O+ and C2H5O+. These ions react with organic molecules through various specific ion–molecule reactions such as hydride abstraction, protonation, additions or cycloadditions. Oxirane CI allows discrimination between unsaturated compounds with [M + 43]+ and [M + 57]+ adduct ions and heteroatom functions with [M + 45]+ adduct ion. All are diagnostic ions. Oxirane CI permits selectivity during the ionization process of a mixture and discrimination of isomers.  相似文献   

5.
Additional evidence for the rearrangement of the 1- and 3-phenylcyclobutene radical cations, their corresponding ring-opened 1,3-butadiene ions and 1,2-dihydronaphthalene radical cations to methylindenetype ions has been obtained for the decomposing ions by mass analysed ion kinetic energy spectroscopy (MIKES). The nature of the [C9H7]+ and [C10H8] daughter ions arising from the electron ionization induced fragmentation of these [C10H10] precursors has been investigated by collisionally activated dissociation (CAD), collisional ionization and ion kinetic energy spectroscopy. The [C9H7]+ produced from the various C10H10 hydrocarbons are of identical structure or an identical mixture of interconverting structures. These ions are similar in nature to the [C9H7]+ generated from indene by low energy electron ionization. The [C10H8] ions also possess a common structure, which is presumably that of the maphthalene radical cation.  相似文献   

6.
Charge reversal (+CR) of cations to anions can be used to structurally differentiate isomeric C6H5+ and C6H6 hydrocarbon ions by means of tandem mass spectrometry. In view of the manifold of possible isomers, only a few prototype precursors are examined. Thus, charge inversion demonstrates that electron ionization of 2,4-hexadiyne yields an intact molecular ion, whereas the charge inversion spectra of C6H6 obtained from benzene, 1,5-hexadiyne, and fulvene are identical within experimental error. Similarly, the +CR spectrum of the C6H5+ cation generated by dissociative ionization of 2,4-hexadiyne is significantly different from the +CR spectrum of C6H5+ obtained from iodobenzene, suggesting the formation of a 2,4-hexadiynyl cation from the former precursor. Although charge inversion of cations to anions has a low efficiency and requires large precursor ion fluxes, the particular value of this method is that the spectra may not just differ in fragment ion intensities, but these differences can directly be related to the underlying ion structures.  相似文献   

7.
Substituents have been found to have a marked influence on the metastable ion decompositions and collisionally activated (CA) fragmentations of the M+˙ ion of a number of 1,2,3-triarylpropen-1-ones. An attempt has been made to confirm the structures of the rearrangement ions, [C14H10]+˙, [C13H11]+˙, [C13H9]+ and [C12H8]+˙ by comparison of their CA spectra with those of the corresponding ions produced from reference compounds. The results imply that [C14H10]+˙ and the M+˙ ions of phenanthrene and diphenylacetylene have a common structure, [C13H9]+ and the fluorenyl cation have a common structure and [C12H8]+˙ and biphenylene molecular ion have a common structure. The available data indicate that the ion at m/z 167 consists of a mixture of structures, likely possibilities being diphenylmethyl, phenyltropylium and dihydrofluorenyl cations.  相似文献   

8.
Structural rearrangements in ions are essential for understanding the composition and evolution of energetic and chemically active environments. This study explores the interconversion routes for simple polycyclic aromatic hydrocarbons, namely naphthalene and azulene radical cations (C10H8+), by combining mass spectrometry and vacuum ultraviolet tunable synchrotron radiation through the chemical monitoring technique. Products of ion-molecule reactions are used to probe C10H8+ structures that are formed as a function of their internal energies. Isomerisation from azulene radical cation towards naphthalene radical cation in a timescale faster than 80 μs was monitored, whereas no reverse isomerisation was observed in the same time window. When energising C10H8+ with more than 6 eV, the reactivity of C10H8+ unveils the formation of a new isomeric group with a contrasted reactivity compared with naphthalene and azulene cations. We tentatively assigned these structures to phenylvinylacetylene cations.  相似文献   

9.
The structures of gas-phase [C4H6O] radical cations and their daughter ions of composition [C2H2O] and [C3H6] were investigated by using collisionally activated dissociation, metastable ion measurement, kinetic energy release and collisional ionization tandem mass spectrometric techniques. Electron ionization (70 eV) of ethoxyacetylene, methyl vinyl ketone, crotonaldehyde and 1-methoxyallene yields stable [C4H6O] ions, whereas the cyclic C4H6O compounds undergo ring opening to stable distonic ions. The structures of [C2H3O] ions produced by 70-eV ionization of several C4H6O compounds are identical with that of the ketene radical cation. The [C3H6] ions generated from crotonaldehyde, methacrylaldehyde, and cyclopropanecarboxaldehyde have structures similar to that of the propene radical cations, whereas those ions generated from the remainder of the [C4H6O] ions studied here produced a mixed population of cyclopropane and propene radical cations.  相似文献   

10.
The ionization and [C4H7]+ appearance energies for a series of C4H7CI and C4H7Br isomers have been measured by dissociative photoionization mass spectrometry. Cationic heats of formation, based on the stationary electron convention, are derived. No threshold ion is observed with a heat of formation corresponding to the trans-1-methylallyl cation, although there is evidence for formation of the less stable cis isomer. A 298 K heat of formation of 871 kJ mol?1 is obtained for the cyclopropylcarbinyl cation, with the cyclobutyl cation having a higher value of 886 kJ mol?1. At the HF/6-31G** level, ab initio molecular orbital calculations show the 2-butenyl, isobutenyl and homoallyl cations to be stable forms of [C4H7]+, being less stable than the trans-1-methylallyl cation by 101 kJ mol?1, 159 kJ mol?1 and 164 kJ mol?1, respectively. However, threshold formation is not observed for any of these ions, the fragmentation of appropriate precursor molecules producing [C4H7]+ ions with lower energy structures.  相似文献   

11.
A new salt, diphenyliodonium diiodobromide [C12H10I+][BrI2 ?], was synthesized, isolated as brown crystals, and studied by XRD. The structure of the diphenyliodonium diiodobromide consists of separate, nearly linear anions BrI2 ?, and cations C12H10I+. In the crystal of the salt there are strong intermolecular anionanion (BrI2 ???I2Br?) and anion-cation (I2Br???I+) interactions. The complexation in the system of organic cation bromide-elemental iodine was studied spectrophotometrically.  相似文献   

12.
The distonic radical cation C5H5N+?·CH2 can be generated by the reactions of neutral pyridine with the radical cations of cyclopropane, ethylene oxide, and ketene, as well as with the [C3H6]+ ion from fragmentation of tetrahydrofuran. The distonic product ion can be distinguished from isomeric methylpyridine radical cations because the former gives characteristic [M?CH2]+, [M ? CH2NCH]+, and a doubly charged ion, all of which are produced on collisional activation. Furthermore, the distonic species completely transfers CH2 + to more nucleophilic, substituted pyridines. These properties are all consistent with the assigned distonic structure. Another distonic isomer, the (3-methylene) pyridinium ion, can be distinguished from the (1-methylene)pyridinium ion on the basis of their different fragmentation behaviors. The latter ion exhibits higher stability (lower reactivity) than the prototypal [·CH2NH3 +], making available a distonic species whose bimolecular reactivity can be readily investigated.  相似文献   

13.
Acylium ions containing a variety of substituents all undergo an unprecedented reaction with 1,3-dioxolanes which gives rise to a cyclic, resonance-stabilized oxonium ion, formally the product of oxirane (C2H4O) addition to the reagent ion. The structure for the ion–molecule product is supported by multiple-stage mass spectrometric experiments, performed in a pentaquadrupole mass spectrometer, which show the expected fragmentation by C2H4O loss to yield the original reactant acylium ions. The oxonium ions are formed in relatively high abundance in many cases and are observed even when proton-transfer reactions would be expected to occur competitively owing to the acidity of some of the acylium ions studied. This ion–molecule reaction is proposed to serve as a general method for identification and/or trapping of ions of the whole acylium ion class and also for the gas-phase generation of the oxonium ions. The reaction with 1,3-dioxolane is also useful in distinguishing the most stable C2H3O+ ion, the acetyl cation, from its two stable isomers, O-protonated ketene and the oxiranyl cation. The thioacetyl cation, the only sulfur analog investigated, also reacts with dioxolane to form the corresponding oxirane addition product, indicating that the C2H4O addition reaction occurs and that it may be useful for identification of the thioacylium class and for the gas-phase generation of sulfur analogs of oxonium ions.  相似文献   

14.
Mass-analysed ion kinetic energy spectra for collisional activation (CA) of [C6H6]+˙ formed via electron capture by [C6H6]2+ ions in collision with neutral benzene molecules have been compared for the C6H6 isomers benzene, 1,5-hexadiyne and 2,4-hexadiyne. Comparisons of fragment abundance and total CA fragment yields were also made for [C6H6]+˙ ions generated by electron ionization (EI). CA conditions of ion velocity and collision gas pressure were identical in these comparisons. In general the fragment abundance patterns for the ions formed by charge exchange were very similar to those for singly charged benzene ions generated by EI. However, significant variations in CA fragment yield (the ratio of the total CA fragment ion abundance to the abundance of the incident unfragmented ions) were observed. It is not clear from the results whether these variations reflect structurally different ions or ions of different internal energies. The CA spectra of [C6H6]+˙ ions derived from charge exchange reactions between the benzene dication and the target gases He, Ne, Ar, Kr and Xe have also been recorded and, once again, very similar fragment abundance patterns were observed along with large variations in total CA fragment yields. Charge exchange efficiency measurements are reported for reactions between the benzene dication and the targets He, Ne, Ar, Kr, Xe and C6H6 (benzene) and also for the doubly charged ions derived from the linear C6H6 isomers. In the latter case Xe and benzene targets were used. The energetics and efficiency measurements for the former reactions suggest that for targets such as He and Ne the processes probably involve excited states of the doubly charged ions. The efficiencies measured for the latter reactions were distinctly different for the three C6H6 isomers and may indicate a strong dependence of charge exchange cross-section on doubly charged ion structure.  相似文献   

15.
In the title compound, [CrBr2(C5H14N2)2]2Br2·HClO4·6H2O, there are two independent CrIII complex cations which are conformational isomers of each other. The Cr atoms lie respectively on a center of symmetry and on a mirror plane and have octahedral environments, coordinated by the N atoms of two 2,2‐di­methylpropane‐1,3‐diamine ligands and by two Br atoms in trans positions. The Cr—N and Cr—Br bond lengths are in the ranges 2.078 (3)–2.089 (3) and 2.4495 (9)–2.5017 (9) Å, respectively. The crystal structure consists of two CrIII complex cations, two Br? anions, a (ClO4)? anion and an [H13O6]+ hydrogen‐bonded cluster cation.  相似文献   

16.
In an attempt to produce the 2‐norbornyl cation (2NB+) in the gas phase, protonation of norbornene was accomplished in a pulsed discharge ion source coupled with a supersonic molecular beam. The C7H11+ cation was size‐selected in a time‐of‐flight mass spectrometer and investigated with infrared laser photodissociation spectroscopy using the method of “tagging” with argon. The resulting vibrational spectrum, containing sharp bands in the C? H stretching and fingerprint regions, was compared to that predicted by computational chemistry. However, the measured spectrum did not match that of 2NB+, prompting a detailed computational study of other possible isomers of C7H11+. This study finds five isomers more stable than 2NB+. The spectrum obtained corresponds to the 1,3‐dimethylcyclopentenyl cation, the global minimum‐energy structure for C7H11+, which is produced through an unanticipated ring‐opening rearrangement path.  相似文献   

17.
Molecular structures and energies have been calculated, using MINDO/3, of the mass spectral ions arising from benzene: (C6H6)+ (three non-valence isomers); (C6H5+); (C5H3+) (four isomers); (C4H4)+ (three isomers); (C4H3)+ (two isomers); (C4H2)+ (four isomers); (C3H3)+; and (C2H2)+. Calculations have been made for the conjugate neutral fragments, allowing calculation of appearance potentials, and also for the ion (C6H7)+.  相似文献   

18.
The ion/molecule reaction of the tolyl cation with dimethyl ether has been investigated using triple quadrupole mass spectrometry. Three isomers with [C7H7]+ composition, the 3-tolyl, benzyl, and tropylium cations, were individually selected and reacted with dimethyl ether at a pressure of 1 mtorr in the second quadrupole (Q2) collision cell. Only the tolyl ion reacted to yield a methoxylated product ion peak at m/z 122. This reaction product having m/z 122 is postulated to be identical in structure with the molecular ion of 3-methyl anisole, as supported by thermochemical data and the similarity of the collision induced dissociation (CID) daughter ion mass spectra of the product ion and the molecular ion of authentic 3-methyl anisole. The daughter ion mass spectra of the three [C7H7]+ isomers during CID, by using a triple quadrupole mass spectrometer, are nearly identical; on the other hand, the analytical approach based on the ion/molecule reaction with dimethyl ether clearly exhibits distinct gas-phase chemistry reflecting structural differences among the isomers. Sot  相似文献   

19.
The [C6H9]+ ions produced either via unimolecular H2O loss from 13 [C6H11O]+ precursors or direct protonation of 1,3- and 1,4-cyclohexadiene have identical collisional activation mass spectra. The kinetic energy release data for the process [C6H11O]+→[C6H9]++H2O are also very similar (on average T0.5=24 meV) irrespective of the constitution of the precursor. From the proton affinities of 1,3-cyclohexadiene (PA=837.2 kJ mol?1) using ion cyclotron resonance mass spectrometry the heat of formation of the [C6H9]+ ion is determined to 804.6 kJ mol?1. This value taken together with the results of molecular orbital calculations (MNDO) and the structure indicative losses of CH3. and C2H4 upon collisional activation suggest that the [C6H9]+ ion has the structure of the 1-methylcyclopentenylium ion f and not that of the slightly less stable cyclohexenylium ion g. The generator of an easily interconverting system of isomeric [C6H9]+ ions is unlikely to be due to the high barrier separating the various isomers.  相似文献   

20.
Structures and energies have been calculated, in the MNDO approximation, for xanthan hydride (C2H2N2S3) and its molecular cation, and for the mass spectral fragment ions H2NCNCS+, HNCNCS+, CS2+, H2N2CS+ (two isomers), HN2CS+, S2+, H2NCS+ (three isomers), HNCS+ (two isomers), H3N2C2+ (four isomers), CS+ and HNCS+2 (two isomers), together with the corresponding neutral fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号