首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用巨正则系综的MonteCarlo方法(GCMC)模拟常温(T=303K)下,氮气和氧气在具有狭缝状膜孔的碳膜内的吸附.气体分子之间、气体分子与膜原子之间的相互作用均采用Shifted-Lennard-Jones势能模型.研究了303K和10MPa下,不同膜厚度和膜孔宽度时氧气在膜面和膜孔内的密度分布以及303K和压力从1MPa到10MPa变化时,氮气和氧气在狭缝膜孔内超额吸附等温线.实验结果表明,膜孔端口效应显著,膜厚和膜孔宽度对孔内吸附影响较大,而膜构型对膜面吸附影响显著.  相似文献   

2.
用巨正则系综MonteCarlo(GCEMC)方法模拟了活性碳孔吸附丙烷时的微观结构.在GCEMC模拟中,非极性丙烷分子采用单点LJ球状分子模型,狭缝活性碳孔墙采用10-4-3势能模型.在温度T=134.3K下,模拟并观察到了丙烷分子在狭缝活性碳孔中的吸附、脱附以及毛细凝聚现象,得到了吸附等温线和孔中流体的局部密度轮廓图.从分子水平出发,详细分析了吸附、毛细冷凝时孔中流体的微观结构,为认识、理解吸附的微观机理提供了工具与借鉴.  相似文献   

3.
层柱状微孔材料吸附存储天然气的Monte Carlo模拟   总被引:4,自引:0,他引:4  
采用巨正则系综MonteCarlo方法模拟了天然气中主要成分甲烷在层柱状微孔材料中T=300K下的吸附存储,在模拟中层柱状微孔采用Yi等人建立的柱子均匀分布在两炭孔墙之间的模型来表征。甲烷分子采用Lennard-Jones球型分子模型,炭孔墙采用Steele的10-4-3模型,对孔宽为1.36nm的层柱微孔,模拟了四个不同孔率的层柱材料吸附甲烷的情形。得到了孔中流体的局部密度分布以及吸附等温线,对比不同孔率下甲烷的吸附量,得到了此情形吸附甲烷的较佳孔率为0.94。  相似文献   

4.
利用空气氧化和稀酸回流纯化单壁碳纳米管,用高分辨透射电镜、拉曼光谱对碳纳米管进行了表征.在分子模拟中,非极性氢气、甲烷分子采用单点Lennard-Jones球形分子模型,流体分子与C原子之间相互作用采用虚拟原子模型.以液氮温度下碳纳米管对氮气的吸附等温线实验数据为依据,利用巨正则蒙特卡罗方法模拟得到了碳纳米管的孔径分布,主要集中在6nm.计算了常温常压下碳纳米管中甲烷及氢气的吸附等温线,298K及0.1MPa压力下,氢气的吸附量达到0.015%(质量分数),甲烷在样品中的吸附量可以达到0.5%(质量分数).模拟研究结果表明碳纳米管可以用作固相微萃取涂层材料.  相似文献   

5.
采用等效Stockmayer势能模型得到R22的势能参数,并应用Gibbs系综模拟汽液平衡予以考察。模拟中,采用了Metropolis抽样及周期边界条件。模拟结果表明饱和液体密度精度较高,且饱和蒸汽的密度及蒸汽压的结果也十分令人满意,说明等效Stockmayer势能模型方法的可靠性和可行性。  相似文献   

6.
HCFC-R22的等效stockmayer势能模型及汽液平衡分子模拟   总被引:1,自引:0,他引:1  
采用等效Stockmayer势能模型得到R22的势能参数,并应用Gibbs系综模拟汽液平衡予以考察。模拟中,采用了Metropolis抽样及周期边界条件。模拟结果表明饱和液体密度精度较高,且饱和蒸汽的密度及蒸汽压的结果也十分令人满意,说明等效Stockmayer势能模型方法的可靠性和可行性。  相似文献   

7.
甲烷在中孔分子筛MCM-41中吸附的计算机模拟   总被引:4,自引:0,他引:4  
采用巨正则系综Monte Carlo方法研究了甲烷在两个不同孔径的MCM-41中不同温度下的吸附等温线和其在孔中的相行为和排列方式.模拟结果显示,在较小孔径的MCM-41中,流体分子达到毛细凝聚所需的化学位较小,并且观察到两个孔径下计算机模拟得到的亚稳态区域都非常宽,使得层状转变(如果有的话)被包含在这个区域.通过比较两种孔径下达到毛细凝聚后的构型,可以看出,在3.5 nm的孔中流体的分子结构出现非常有序的排列,而在5.0 nm的孔中则没有.在常温300 K时甲烷的吸附的计算机模拟表明,孔壁对流体分子的作用仅仅影响较靠近壁面附近的流体分子的排列,而对孔中间的分子几乎没有影响.  相似文献   

8.
用巨正则MonteCarlo(GCMC)方法模拟了甲烷在氯化锆层柱材料中的吸附。模拟中,氯化锆层柱材料模型化为柱子均匀分布在层板间的层柱孔,非极性分子甲烷采用Lennard-Jones分子模型,层板墙采用Steele的10-4-3模型,流体分子与柱子的相互作用采用点-点(sitetosite)的方法计算。在高度理想化模型的基础上,引入交互作用参数kfw,建立了有效势能模型。通过实验数据确定交互作用参数kfw,从而使该模型能有效地表征流体与层板墙的相互作用。根据77K温度下氮气的实验吸附数据,确定了流体和层板墙间的交互相作用参数。然后用这个有效的参数kfw=0.65模拟了三个超临界温度下氯化锆层柱材料中甲烷的吸附情形,得到了它位的吸附等温线,局部密度分布以有流体分子在层柱微孔中的瞬时构象,并分析了温度对材料吸附性能的影响。结果表明GCMC方法是预测材料吸附性能的一种强有力的工具。  相似文献   

9.
曹达鹏  汪文川 《化学学报》2001,59(11):1898-1903
用巨正则MonteCarlo(GCMC)方法模拟了甲烷在氯化锆层柱材料中的吸附。模拟中,氯化锆层柱材料模型化为柱子均匀分布在层板间的层柱孔,非极性分子甲烷采用Lennard-Jones分子模型,层板墙采用Steele的10-4-3模型,流体分子与柱子的相互作用采用点-点(sitetosite)的方法计算。在高度理想化模型的基础上,引入交互作用参数kfw,建立了有效势能模型。通过实验数据确定交互作用参数kfw,从而使该模型能有效地表征流体与层板墙的相互作用。根据77K温度下氮气的实验吸附数据,确定了流体和层板墙间的交互相作用参数。然后用这个有效的参数kfw=0.65模拟了三个超临界温度下氯化锆层柱材料中甲烷的吸附情形,得到了它位的吸附等温线,局部密度分布以有流体分子在层柱微孔中的瞬时构象,并分析了温度对材料吸附性能的影响。结果表明GCMC方法是预测材料吸附性能的一种强有力的工具。  相似文献   

10.
乐园  陈建峰  汪文川 《物理化学学报》2004,20(11):1303-1307
用巨正则系综蒙特卡罗(GCMC)模拟方法结合统计积分方程(SIE)计算了SiO2空心微球球壳上的孔径分布(PSD).HRTEM、XRD及氮气吸附等实验测试表明,SiO2空心微球的球壳上有无序的介孔孔道.在模拟中,基于实验数据,将SiO2空心微球模型化为具有一定孔径分布的园柱孔,流体模型化为Lennard-Jones(LJ)球,流体分子和孔壁间的相互作用采用Wang等人[10]最近提出的完全解析的势函数描述.模拟结果显示,用孔径分布拟合的吸附数据和实验吸附等温线吻合良好,说明PSD能够十分有效地表示SiO2空心微球的微孔结构.  相似文献   

11.
Grand canonical Monte Carlo (GCMC) simulations were used for the modeling of the hydrogen adsorption in idealized graphite slitlike pores. In all simulations, quantum effects were included through the Feynman and Hibbs second-order effective potential. The simulated surface excess isotherms of hydrogen were used for the determination of the total hydrogen storage, density of hydrogen in graphite slitlike pores, distribution of pore sizes and volumes, enthalpy of adsorption per mole, total surface area, total pore volume, and average pore size of pitch-based activated carbon fibers. Combining experimental results with simulations reveals that the density of hydrogen in graphite slitlike pores at 303 K does not exceed 0.014 g/cm(3), that is, 21% of the liquid-hydrogen density at the triple point. The optimal pore size for the storage of hydrogen at 303 K in the considered pore geometry depends on the pressure of storage. For lower storage pressures, p < 30MPa, the optimal pore width is equal to a 2.2 collision diameter of hydrogen (i.e., 0.65 nm), whereas, for p congruent with 50MPa, the pore width is equal to an approximately 7.2 collision diameter of hydrogen (i.e., 2.13 nm). For the wider pores, that is, the pore width exceeds a 7.2 collision diameter of hydrogen, the surface excess of hydrogen adsorption is constant. The importance of quantum effects is recognized in narrow graphite slitlike pores in the whole range of the hydrogen pressure as well as in wider ones at high pressures of bulk hydrogen. The enthalpies of adsorption per mole for the considered carbonaceous materials are practically constant with hydrogen loading and vary within the narrow range q(st) congruent with 7.28-7.85 kJ/mol. Our systematic study of hydrogen adsorption at 303 K in graphite slitlike pores gives deep insight into the timely problem of hydrogen storage as the most promising source of clean energy. The calculated maximum storage of hydrogen is equal to approximately 1.4 wt %, which is far from the United States Department of Energy (DOE) target (i.e., 6.5 wt %), thus concluding that the total storage amount of hydrogen obtained at 303 K in graphite slitlike pores of carbon fibers is not sufficient yet.  相似文献   

12.
A thermodynamic approach based on the Bender equation of state is suggested for the analysis of supercritical gas adsorption on activated carbons at high pressure. The approach accounts for the equality of the chemical potential in the adsorbed phase and that in the corresponding bulk phase and the distribution of elements of the adsorption volume (EAV) over the potential energy for gas-solid interaction. This scheme is extended to subcritical fluid adsorption and takes into account the phase transition in EAV. The method is adapted to gravimetric measurements of mass excess adsorption and has been applied to the adsorption of argon, nitrogen, methane, ethane, carbon dioxide, and helium on activated carbon Norit R1 in the temperature range from 25 to 70 degrees C. The distribution function of adsorption volume elements over potentials exhibits overlapping peaks and is consistently reproduced for different gases. It was found that the distribution function changes weakly with temperature, which was confirmed by its comparison with the distribution function obtained by the same method using nitrogen adsorption isotherm at 77 K. It was shown that parameters such as pore volume and skeleton density can be determined directly from adsorption measurements, while the conventional approach of helium expansion at room temperature can lead to erroneous results due to the adsorption of helium in small pores of activated carbon. The approach is a convenient tool for analysis and correlation of excess adsorption isotherms over a wide range of pressure and temperature. This approach can be readily extended to the analysis of multicomponent adsorption systems.  相似文献   

13.
Small-angle neutron scattering (SANS) has been used to study the adsorption behavior of supercritical carbon dioxide (CO2) in porous Vycor glass and silica aerogels. Measurements were performed along two isotherms (T=35 and 80 degrees C) as a function of pressure (P) ranging from atmospheric up to 25 MPa, which corresponds to the bulk fluid densities ranging from rho(CO2) approximately 0 to 0.9 gcm3. The intensity of scattering from CO2-saturated Vycor porous glass can be described by a two-phase model which suggests that CO2 does not adsorb on the pore walls and fills the pore space uniformly. In CO2-saturated aerogels an adsorbed phase is formed with a density substantially higher that of the bulk fluid, and neutron transmission data were used to monitor the excess adsorption at different pressures. The results indicate that adsorption of CO2 is significantly stronger in aerogels than in activated carbons, zeolites, and xerogels due to the extremely high porosity and optimum pore size of these materials. SANS data revealed the existence of a compressed adsorbed phase with the average density approximately 1.07 gcm3, close to the density corresponding to closely packed van der Waals volume of CO2. A three-phase model [W. L. Wu, Polymer 23, 1907 (1982)] was used to estimate the volume fraction phi3 of the adsorbed phase as a function of the fluid density, and gave phi3 approximately 0.78 in the maximum adsorption regime around rho(CO2) approximately 0.374 gcm3. The results presented in this work demonstrate the utility of SANS combined with the transmission measurements to study the adsorption of supercritical fluids in porous materials.  相似文献   

14.
The densities of pore-confined fluids were measured for the first time by means of vibrating tube densimetry (VTD). A custom-built high-pressure, high-temperature vibrating tube densimeter was used to measure the densities of propane at subcritical and supercritical temperatures (between 35 and 97 °C) and carbon dioxide at supercritical temperatures (between 32 and 50 °C) saturating hydrophobic silica aerogel (0.2 g/cm(3), 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, supercritical isotherms of excess adsorption for CO(2) and the same porous solid were measured gravimetrically using a precise magnetically coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum and then decreased toward zero or negative values above the critical density of the bulk fluid. The isotherms of confined fluid density and excess adsorption obtained by VTD contain additional information. For instance, the maxima of excess adsorption occur below the critical density of the bulk fluid at the beginning of the plateau region in the total adsorption, marking the end of the transition of pore fluid to a denser, liquidlike pore phase. Compression of the confined fluid significantly beyond the density of the bulk fluid at the same temperature was observed even at subcritical temperatures. The effect of pore confinement on the liquid-vapor critical temperature of propane was less than ~1.7 K. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. Good quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Thus, it is demonstrated that vibrating tube densimetry is a novel experimental approach capable of providing directly the average density of pore-confined fluids, and hence complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess).  相似文献   

15.
We discuss the thermodynamics of physical adsorption of gases in porous solids. The measurement of the amount of gas adsorbed in a solid requires specialized volumetric and gravimetric techniques based upon the concept of the surface excess. Excess adsorption isotherms provide thermodynamic information about the gas-solid system but are difficult to interpret at high pressure because of peculiarities such as intersecting isotherms. Quantities such as pore density and heats of adsorption are undefined for excess isotherms at high pressure. These difficulties vanish when excess isotherms are converted to absolute adsorption. Using the proper definitions, the special features of adsorption can be incorporated into a rigorous framework of solution thermodynamics. Practical applications including mixed-gas equilibria, equations for adsorption isotherms, and methods for calculating thermodynamic properties are covered. The primary limitations of the absolute adsorption formalism arise from the need to estimate pore volumes and in the application to systems with larger mesopores or macropores at high bulk pressures and temperatures where the thermodynamic properties may be dominated by contributions from the bulk fluid. Under these circumstances a rigorous treatment of the thermodynamics requires consideration of the adsorption cell and its contents (bulk gas, porous solid and confined fluid).  相似文献   

16.
A grand canonical Monte Carlo (GCMC) method is carried out to determine optimum adsorptive storage pressures of supercritical methane in pillared layered pores. In the simulation, the pillared layered pore is modeled by a uniform distribution of pillars between two solid walls. Methane is described as a spherical Lennard-Jones molecule, and Steele's 10-4-3 potential is used for representing the interaction between the fluid and a layered wall. The site-site interaction is also used for calculating the interaction energy between methane molecules and pillars. An effective potential model that reflects the characteristics of a real pillared layered material is proposed here. In the model, a binary interaction parameter, k(fw), is introduced into the combining rule for the cross-energy parameter for the interaction between the fluid and a layered wall. Based on the experimental results for the Zr-pillared material synthesized and characterized by Boksh, Kikkinides, and Yang, the binary interaction parameter, k(fw), is determined by fitting the simulation results to the experimental adsorption data of nitrogen at 77 K. Then, by taking it as a model of pillared layered material, a series of GCMC simulations have been carried out. The excess adsorption isotherms of methane in a pillared layered pore with three different pore widths and porosities are obtained at three supercritical temperatures T=207.3, 237.0, and 266.6 K. Based on the simulation results at different porosities, various pore widths and different supercritical temperatures, the pillared layered pore with porosity psi=0.94 and pore width hsigma(p)=1.02 nm is recommended as adsorption storage material of supercritical methane. Moreover, the optimum adsorption pressure is determined at a given temperature and a fixed width of the pillared layered pore. For example, at temperature T=207.3 K, the optimum adsorption pressures are 3.1, 3.7, and 4.5 M Pa at H=1.02, 1.70, and 2.38 nm, respectively. In summary, the GCMC method is a useful tool for optimizing adsorption storage of supercritical methane in pillared layered material.  相似文献   

17.
巨正则系综Monte Carlo模拟方法确定活性炭的微孔尺寸   总被引:3,自引:0,他引:3  
根据299K下甲烷在活性炭中的吸附实验数据,通过调节狭缝微孔的孔宽参数,利用巨正则系综MonteCarlo(GCEMC)方法得到不同孔宽下流体的微观结构以及吸附等温线.比较并拟合模拟结果和实验数据,确定了活性炭微孔的平均孔宽,为下一步求解微孔尺寸分布以及为预测吸附剂在不同温度下吸附不同吸附质分子时的吸附性能提供了基础与指导.模拟中,甲烷分子采用单点Lennard-Jones球型分子模型,活性炭用狭缝孔来近似表征,流体分子与单个狭缝墙的相互作用采用著名的Steele的10-4-3势能模型.模拟表明,此方法为考察介孔材料的微孔分布以及微孔平均孔宽提供了新的思路.  相似文献   

18.
Hydrogen in slit-like carbon nanopores at 77 K represents a quantum fluid in strong confinement. We have used path-integral grand canonical Monte Carlo and classical grand canonical Monte Carlo simulations for the investigation of the "quantumness" of hydrogen at 77 K adsorbed in slit-like carbon nanopores up to 1 MPa. We find that classical simulations overpredict the hydrogen uptake in carbon nanopores due to neglect of the quantum delocalization. Such disagreement of both simulation methods depends on the slit-like carbon pore size. However, the differences between the final uptakes of hydrogen computed from both classical and quantum simulations are not large due to a similar effective size of quantum/classical hydrogen molecules in carbon nanospaces. For both types of molecular simulations, the volumetric density of stored energy in optimal carbon nanopores exceeds 6.4 MJ dm(-3) (i.e., 45 kg m(-3); Department of Energy target for 2010). In contrast to the hydrogen adsorption isotherms, we found a large reduction of isosteric enthalpy of adsorption computed from the quantum Feynman's path-integral simulations in comparison to the classical values at 77 K and pressures up to 1 MPa. Depression of the quantum isosteric enthalpy of adsorption depends on the slit-like carbon pore size. For the narrow pores (pore width H in [0.59-0.7] nm), the reduction of the quantum isosteric enthalpy of adsorption at zero coverage is around 50% in comparison to the classical one. We observed new phenomena called, by us, the quantum confinement-inducing polymer shrinking. In carbon nanospaces, the quantum cyclic polymers shrink, in comparison to its bulk-phase counterpart, due to a strong confinement effect. At considered storage conditions, this complex phenomenon depends on the size of the slit-like carbon nanopore and the density of hydrogen volumetric energy. For the smallest nanopores and a low density of hydrogen volumetric energy, the reduction of the polymer effective size is the highest, whereas an increase of the pore size and the density of hydrogen volumetric energy causes the polymer swelling up to a value slightly below the one computed from the bulk phase. Quantum confinement-inducing polymer shrinking is of great importance for realizing the potential of quantum molecular sieves.  相似文献   

19.
We report experimental and simulation studies to investigate the effect of temperature on the adsorption isotherms for water in carbons. Adsorption isotherms are measured by a gravimetric technique in carbon-fiber monoliths at 378 and 423 K and studied by molecular simulation in ideal carbon pores in the temperature range 298-600 K. Experimental adsorption isotherms show a gradual water uptake, as the pressure increases, and narrow adsorption-desorption hysteresis loops. In contrast, simulated adsorption isotherms at room temperature are characterized by negligible uptake at low pressures, sudden and complete pore filling once a threshold pressure is reached, and wide adsorption-desorption hysteresis loops. As the temperature increases, the relative pressure at which pore filling occurs increases and the size of the hysteresis loop decreases. Experimental adsorption-desorption hysteresis loops are narrower than those from simulation. Discrepancies between simulation and experimental results are attributed to heterogeneities in chemical composition, pore connectivity, and nonuniform pore-size distribution, which are not accounted for in the simulation model. The hysteresis phase diagram for confined water is obtained by recording the pressure-density conditions that bound the simulated hysteresis loop at each temperature. We find that the hysteresis critical temperature, i.e., the lowest temperature at which no hysteresis is detected, can be hundreds of degrees lower than the vapor-liquid critical temperature for bulk model water. The properties of confined water are discussed with the aid of simulation snapshots and by analyzing the structure of the confined fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号