首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crystal structures of three new intermetallic ternary compounds in the LnNiSb3 (Ln=Pr, Nd and Sm) family have been characterized by single crystal X-ray diffraction. PrNiSb3, NdNiSb3 and SmNiSb3 all crystallize in an orthorhombic space group, Pbcm (No. 57), Z=12, with , , , and ; , , , and ; and , , , and , for Ln=Pr, Nd and Sm, respectively. These compounds consist of rare-earth atoms located above and below layers of nearly square, buckled Sb nets, along with layers of highly distorted edge- and face-sharing NiSb6 octahedra. Resistivity data indicate metallic behavior for all three compounds. Magnetization measurements show antiferromagnetic behavior with (PrNiSb3), 4.6 K (NdNiSb3), and 2.9 K (SmNiSb3). Effective moments of 3.62 μB, 3.90 μB and 0.80 μB are found for PrNiSb3, NdNiSb3 and SmNiSb3, respectively, and are consistent with Pr3+ (f 2), Nd3+ (f 3), and Sm3+ (f 4).  相似文献   

2.
Ln3Co4Sn13 (Ln=La, Ce) have been synthesized by flux growth and characterized by single crystal X-ray diffraction. These compounds adopt the Yb3Rh4Sn13-type structure and crystallize in the cubic space group (No. 223) with Z=2. Lattice parameters at 298 K are , , and , for the La and Ce analogues, respectively. The crystal structure consists of an Sn-centered icosahedron at the origin of the unit cell, which shares faces with eight Co trigonal prisms and 12 Ln-centered cuboctahedra. Magnetization data at 0.1 T show paramagnetic behavior down to 1.8 K for Ce3Co4Sn13, with per Ce3+, while conventional type II superconductivity appears below 2.85 K in the La compound. Electrical resistivity and specific heat data for the La compound show a corresponding sharp superconducting transition at Tc∼2.85 K. The entropy and resistivity data for Ce3Co4Sn13 show the existence of the Kondo effect with a complicated semiconducting-like behavior in the resistivity data. In addition, a large enhanced specific heat coefficient at low T with a low magnetic transition temperature suggests a heavy-fermionic character for the Ce compound. Herein, the structure and physical properties of Ln3Co4Sn13 (Ln=La, Ce) are discussed.  相似文献   

3.
4.
A new compound, CePdGa6, and its isostructural analog, LaPdGa6 have been synthesized by flux growth and characterized by single-crystal X-ray diffraction. The compounds adopt a tetragonal structure with P4/mmm space group, Z=1. The lattice parameters for CePdGa6 are and and and for LaPdGa6. Magnetic and thermal measurement have revealed that CePdGa6 is a heavy-fermion with the specific heat coefficient and Ce f moments order antiferromagnetically along c-axis at . Reconfiguration of spin occurs at to induce a ferromagnetic component only in the a-b plane. This strong anisotropy in the magnetism might be related to its unique layered structure.  相似文献   

5.
The linear swelling ratio α and the effective network chain length N of a series of poly(N,N-dimethylacrylamide) (PDMAAm) hydrogels were investigated as a function of the gel preparation concentration . PDMAAm hydrogels were prepared at a fixed cross-linker ratio but at various initial monomer concentrations. It was found that α is not a monotonic function of . As is increased, α first decreases up to about and remains constant in a narrow range of , but then it increases continuously. The -dependence of α is due to the variation of the network chain length N depending on the gel preparation concentration. In the range of below 0.1, N follows the scaling relationship , while at higher concentrations, N varies only slightly with . The increase of α with N obeys the relation , as predicted by the Flory-Rehner theory.  相似文献   

6.
A new heterometallic iodide, PbI4Cu2(PPh3)4, was synthesized by reactions of PbI2, CuI and triphenylphosphine (PPh3) in DMF solution. The single-crystal X-ray diffraction analyses show that Pb(II) center adopts an unusual cis-divacant octahedral geometry. Crystal data: triclinic, space group , , , , α=106.623(4)°, β=103.478(6)°, γ=93.574(5)°, and Z=2. Density function theory (DFT) calculations and fragment orbital interaction analyses reveal the presence of a three-center four-electron (3c-4e) hypervalent bonding about lead; and the formation of the unusual cis-divacant [PbI4]2− octahedron is energetically favorable. The title yellow compound has an optical bandgap of 2.69 eV and shows remarkable red-infrared fluorescence emission at 732 nm with lifetime of 24 μs which is assigned as an iodine 5p-lead 6s to PPh3-lead 6p charge transfer (XM-LM-CT).  相似文献   

7.
The crystal structure of Nb22O54 is reported for the first time, and the structure of orthorhombic Nb12O29 is reexamined, resolving previous ambiguities. Single crystal X-ray and electron diffraction were employed. These compounds were found to crystallize in the space groups P2/m (, , , β=102.029(3)°) and Cmcm (, , ), respectively and share a common structural unit, a 4×3 block of corner sharing NbO6 octahedra. Despite different constraints imposed by symmetry these blocks are very similar in both compounds. Within a block, it is found that the niobium atoms are not located in the centers of the oxygen octahedra, but rather are displaced inward toward the center of the block forming an apparent antiferroelectric state. Bond valence sums and bond lengths do not show the presence of charge ordering, suggesting that all 4d electrons are delocalized in these compounds at the temperature studied, T=200 K.  相似文献   

8.
By hydrothermal reaction of In2O3 with H2C2O4·2H2O in the presence of H3BO3 at 155 °C, an open-framework three-dimensional indium oxalate of formula [In(OH)(C2O4)(H2O)]3·H2O (1) has been obtained. The compound crystallizes in the trigonal system, space group R3c with , , , Z=6, R1=0.0352 at 298 K. The small pores in 1 are filled with water molecules. It loses its filled water at about 180 °C without the change of structure, then the bounded water at 260 °C, and completely decompounds at 324 °C. The residue is confirmed to be In2O3.  相似文献   

9.
10.
11.
A novel ternary borate oxide, lead bismuth boron tetraoxide, PbBiBO4, has been prepared by solid-state reaction at temperature below 800 °C. The single-crystal X-ray structural analysis showed that PbBiBO4 crystallizes in the monoclinic space group P21/n with , , , β=91.48(1), Z=4. It represents a new structure type in which distorted BiO69− octahedra are connected to each other in corner- and edge-sharing manner to form two-dimensional layers that are bridged by B atoms of BO3 triangles giving rise to a three-dimensional framework, with channels parallel to the [0 1 0] direction accommodating the pyramidally coordinated Pb2+ cations.  相似文献   

12.
The geometry and chemical bonding in the closo metal-free boranes and the isoelectronic carboranes and C2Bn−2Hn with 2n + 2 skeletal electrons are based on the most spherical deltahedra with a preference for degree 5 vertices, particularly for the boron atoms. Such deltahedral boranes can be considered to be three-dimensional aromatic systems, as indicated by strongly diatropic nucleus independent chemical shift values for (n = 6, 8, 9, 12). Metallaborane structures, particularly those with 9-11 vertices and only 2n rather than 2n + 2 apparent skeletal electrons, are often based on isocloso deltahedra with the metal atom at a degree 6 vertex. Dimetallaborane structures, particularly the rhenium derivatives Cp2Re2Bn−2Hn−2 (8 ? n ? 12), are based on highly non-spherical and very oblate deltahedra with the metal atoms typically at degree 6 or 7 vertices, which are the lowest curvature sites of the deltahedra. A viable model for the skeletal bonding in such dimetallaboranes can be developed if each of the two metal vertices is assumed to contribute five internal orbitals to the skeletal bonding. This leads to 2n + 4 skeletal electrons, which are partitioned into n surface bonds and a formal metal-metal double bond inside the oblate deltahedron.  相似文献   

13.
14.
15.
The rare-earth dicyanamides Ln[N(CN)2]3 (Ln=La, Ce, Pr, Nd, Sm, Eu) were obtained via ion exchange in aqueous medium and subsequent drying: The crystal structures were solved and refined based on X-ray powder diffraction data and they were found to be isotypic: Ln[N(CN)2]3; Cmcm (no. 63), Z=4, Ln=La: , , ; Ce: , , ; Pr: , , ; Nd: , , ; Sm: , , ; Eu: , , ). The compounds represent the first dicyanamides with trivalent cations. The Ln3+ ions are coordinated by three bridging N atoms and six terminal N atoms of the dicyanamide ions forming a three capped trigonal prism. The structure type is related to that of PuBr3. The novel compounds Ln[N(CN)2]3 have been characterized by IR and Raman spectroscopy (Ln=La) and the thermal behavior has been monitored by differential scanning calorimetry (Ln=Ce, Nd, Eu).  相似文献   

16.
17.
We have determined the crystal structure of the title compound, which has a triclinic cell with cell parameters of , , , α=76.617°, β=84.188°, γ=74.510° and space group . The crystal structure suggests the chemical formula CoMoO4·3/4H2O. The structure consists of MoO4 tetrahedra and CoO6 octahedra, confirming the earlier X-ray absorption near-edge spectroscopic (XANES) investigation on the hydrate. The comparison of the crystal structures of the hydrate and the α-,β-, and hp-phases shows that the hydrate exhibits metal cation coordinations similar to those of the β-phase, but had arrangements of CoO6 and MoOn polyhedra similar to those of the hp-phase.  相似文献   

18.
A new ternary compound, Ce2PdGa10, has been synthesized using Ga flux and characterized by single-crystal X-ray diffraction. Ce2PdGa10 adopts a tetragonal structure in the I4/mmm space group and is isostructural to Ce2NiGa10. Lattice parameters are , , , and Z=2. The compound is metallic (dρ/dT>0), with the resistance decreasing roughly linearly with temperature from 300 to 175 K. The magnetic susceptibility of Ce2PdGa10 is consistent with local-moment paramagnetism and no long-range magnetic ordering occurs down to 2 K. A large positive magnetoresistance over 200% is observed at 2 K for fields of 9 T. In this paper, we present the structure and physical properties of Ce2PdGa10 and compared them to CePdGa6.  相似文献   

19.
Temperature-dependent line broadening measurements of emission and excitation transitions for two intrinsic sites U(1) and U(2) of U3+ ions doped in a RbY2Cl7 single crystals as well as of U4+ ions have been performed. Values of the electron phonon (EP) coupling parameter were determined by a fit of experimentally observed line widths to an equation containing the temperature dependent broadening term due to the Raman two-phonon process. The parameters for U3+ ions in RbY2Cl7 are larger than those determined for this ion in LaCl3 host crystals. This is due to shorter M-Cl distances in RbY2Cl7 which leads to a stronger interaction of uranium with the chlorine ions and to an increase of covalency. The relatively large value determined for the multiplet of U3+ in RbY2Cl7 may result from the proximity of opposite parity 5f26d1 states. The parameters obtained for the U3+ ions are larger than those for U4+. The latter ones are affected by a stronger crystal-field (CF), however the position of the first 5f26d1 or 5f16d1 states, which for U3+ is observed at an energy of ∼15,000 cm−1 lower than for U4+, is the dominating one among the factors influencing the EP coupling strength. The EP coupling parameters for all investigated transitions of the U3+ ions are larger for U(2) than for U(1), which results mainly from the larger crystal field strength observed for the U(2) site. The differences in the EP coupling strength of the U3+ ions in the U(1) and U(2) sites are in accordance with decay times observed for emission for both sites from the multiplet.  相似文献   

20.
Nanosized InVO4 with orthorhombic structure was successfully synthesized at a relatively low calcination temperature of 600 °C by using an amorphous heteronuclear complex as precursor. The photocatalytic activity of InVO4 catalyst has been evaluated by the decomposition of formaldehyde (FAD) under UV light () and visible light irradiation (). The as-synthesized InVO4 catalyst showed higher photocatalytic activity for the FAD decomposition compared to the sample prepared by the conventional solid-state reaction. The calculations of the electronic band structures indicated that the valence band was composed of the O 2p orbitals, whereas the conduction band was formed by the V 3d orbitals with a small contribution of the In 5s orbitals. The photocatalytic activity of the as-prepared sample is discussed on the basis of the electronic band structure and bulk material structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号