首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The reactions of R2PPR2 (R = Me, Et, Ph) and (MeP)5 with Me3−nAs(NMe2)n (n = 1, 2, 3) and of Me2PPMe2 with Me2AsNR′2 (R′ = Et, Prn, and Pri) were investigated as a function of time at room temperature using 1H and 31P NMR spectroscopy. For the diphosphine/Me2AsNR′2 reactions, the NMR spectral data suggest a reaction pathway involving the initial formation of R2PAsMe2 and the respective acyclic dialkylaminophosphine, R2PNR′2. The P---As intermediate then symmetrizes to R2PPR2 and Me2AsAsMe2, the parent aminoarsine is completely consumed, and additional R2PNR′ is formed. The relative rate of aminophosphine production is dependent upon the nature of the substituent on the phosphorus and nitrogen atoms. For systems involving MeAs(NMe2)2 and As(NMe2)3 as reactants, the intermediates could not be characterized, but the products were the expected aminophosphine and (MeAs)5 or elemental arsenic, respectively. (MeP)5 reacts to give MeP(NMe2)2 and the expected As---As bonded species. A comparison of the reactivity of these systems with analogous diarsine/aminoarsine systems is discussed. The results of the NMR study were utilized in designing a convenient, high yield, synthetic route to acyclic aminophosphines.  相似文献   

2.
The reaction between RMgCl (two equivalents) and 1,2-W2Cl2(NMe2)4 in hydrocarbon solvents affords the compounds W2R2(NMe2)4, where R = allyl and 1− and 2-methyl-allyl. In the solid state the molecular structure of W2(C3H5)2(NMe2)4 has C2 symmetry with bridging allyl ligands and terminal W---NMe2 ligands. The W---W distance 2.480(1) Å and the C---C distances, 1.47(1) Å, imply an extensive mixing of the allyl π-MOs with the WW π-MOs, and this is supported by an MO calculation on the molecule W2(C3H5)2(NH2)4 employing the method of Fenske and Hall. The most notable interaction is the ability of the (WW)6+ centre to donate to the allyl π*-MO (π3). This interaction is largely responsible for the long W---W distance, as well as the long C---C distances, in the allyl ligand. The structure of the 2-methyl-allyl derivative W2(C4H7)2(NMe2)4 in the solid state reveals a gauche-W2C2N4 core with W---W = 2.286(1) Å and W---C = 2.18(1) Å, typical of WW and W---C triple and single bonds, respectively. In solution (toluene-d8) 1H and 13C NMR spectra over a temperature range −80°C to +60°C indicate that both anti- and gauche- W2C2N4 rotamers are present for the 2-methyl-allyl derivative. In addition, there is a facile fluxional process that equilibrates both ends of the 2-methyl-allyl ligand on the NMR time-scale. This process leads to a coalescence at 100°C and is believed to take place via an η3-bound intermediate. The 1-methyl-allyl derivative also binds in an η1 fashion in solution and temperature-dependent rotations about the W---N, W---C and C=C bonds are frozen out at low temperatures. The spectra of the allyl compound W2(C3H5)2(NMe2)4 revealed the presence of two isomers in solution—one of which can be readily reconciled with the presence of the bridging isomer found in the solid state while the other is proposed to be W23-C3H5)2(NMe2)4. The compound W2R2(NMe2)4 where R = 2,4-dimethyl- pentadiene was similarly prepared and displayed dynamic NMR behaviour explainable in terms of facile η1 = η3 interconversions.  相似文献   

3.
Heterogeneous metallocene catalysts were prepared by adsorbing rac-Et(Ind)2ZrCl2 on a modified silica surface in solution. The modification of silica was conducted in gas phase with atomic layer chemical vapor deposition (ALCVD) technique, where the silica, preheated at either 350 or 600°C, was allowed to react with vaporized trimethylaluminum (TMA) at 250°C. Modified carriers and heterogeneous catalysts were characterized with FTIR, 1H MAS (magic-angle spinning) NMR, 13C, and 29Si CP (cross-polarization) MAS NMR spectroscopies and elemental analyses. In the reaction of TMA with silica, a saturated surface was formed consisting of different (---O)4−nSi(CH3)n (n=1, 2 or 3) and ---AlCH3 groups. The ratio of ---SiMe to ---AlMe groups was approximately 1.5 in the TMA/SiO2 carriers. When the metallocene was adsorbed onto the carrier it seemed to react with the surface ---AlCH3 groups and possibly ---ZrCH3 groups were formed. Heterogeneous catalysts were tested in the polymerization of ethylene and propylene in the presence of methylalumoxane (MAO). And they produced similar polymer as the homogeneous rac-Et(Ind)2ZrCl2 catalyst, but with lower activity. A catalyst with the best activity was achieved from silica that was preheated at 600°C. Moreover, leaching of catalyst was examined whereupon a part of zirconium was observed to desorb from the carrier.  相似文献   

4.
Polymerizations of ethylene have been carried out by using Cp2*Zr(NMe2)2 (Cp*=C5Me5) compound combined with common alkyl aluminums (AlR3) and methylaluminoxane (MAO) as cocatalysts. The AlMe3 cocatalyzed system showed no activity due to the formation of stable but inactive heterodinuclear [Cp2*2Zr(μ-Me)2AlMe2]+ cations; however, the bulkier AlR3 [AlEt3, Al(i-Bu)3 and Al(i-Bu)2H] cocatalyzed systems showed very high activities. Especially, Cp2*Zr(NMe2)2/Al(i-Bu)3 catalyst showed higher catalytic activity and produced higher molecular weight (MW) polymer than Cp2*Zr(NMe2)2/MAO catalyst, demonstrating both MAO and bulky AlR3 are effective cocatalysts for Cp2*Zr(NMe2)2 compound.  相似文献   

5.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

6.
使用桥连配体锂盐与MCl4络合, 合成了4个不同结构的双核茂金属化合物[μ,μ-(CH2)3]{[C(H)·(η5-C5H4)(η5-C13H8)](MCl2)}2[M=Zr or Ti](4, 5)和[μ,μ-(CH2)3]{[C(H)(η5-C5H4)(η5-C9H6)]·(MCl2)}2[M=Zr or Ti](6, 7), 配体和化合物都经过核磁氢谱(1H NMR)、 碳谱(13C NMR)、 红外光谱(IR)及元素分析等表征, 确认了化学结构. 以甲基铝氧烷(MAO)为助催化剂, 化合物4~7为催化剂催化丙烯聚合, 考察了聚合温度、 乙烯压力、 铝钛或铝锆比对催化剂活性及聚合物分子量的影响. 结果表明, 多亚甲基桥连双核茂金属是高活性乙烯和丙烯聚合催化剂, 乙烯聚合活性最高达到7.5× 106 g PE/(mol Zr·h)(化合物6), 丙烯聚合活性达 10 × 105 g sPP/(mol Zr·h)(化合物4). 所得间规聚丙烯(sPP)的间规度指数(SI, r) 达到90%. 在同样条件下, 双核化合物的催化活性、 聚合物分子量Mw(> 100000)以及分子量分布(MWD>2.5)均比相应的单核化合物高(Mw<70000, MWD≤2), 表明该体系中存在较强的核效应.  相似文献   

7.
The monosilylated acyclic phosphazene ligand Me3SiNP(NMe2)2NP(NMe2)2 NH2 (3) has been synthesized and characterized. The reaction of 3 with antimony triacetate, Sb(OOCMe3), in refluxing toluene forms a cyclic phosphazene derivative, [N{P(NMe2)2NH}2Sb(OOCMe)2 (4), which is characterized by elemental analyses, mass, IR and NMR spectroscopy and single-crystal X-ray structural analysis. Complex 4 crystallizes in the form of a cis and trans isomeric chain in the solid state.  相似文献   

8.
The molecular structure of [Zr(NMe2)4]2 has been determined by an x-ray study and shown to involve a central Zr2N8 moiety involving the fusing of two trigonal bipyramidal units along a common axial-equatorial edge. The terminal Zr---NMe2 units have trigonal planar coordination about the nitrogen atoms: Zr---N = 2.050(5) and 2.104(5) Å, and Zr---N (bridge) = 2.224(3) and 2.453(4) Å for equatorial and axial bonds, respectively. The Zr---Zr distance is 3.704(1) Å as expected for a non-M---M bonding bridged compound. In tetrahydrofuran solution, Zr(NMe2)4 and LiNMe2 react irreversibly giving Zr(NMe2)6 Li2(THF)2 which has been isolated and characterized by an X-ray study. The central ZrN6 octahedral moiety is capped on two opposite faces by Li atoms which are also coordinated to an oxygen atom of a THF molecule. Pertinent distances are: Zr---N = 2.22(7) (av.), N---Li = 2.155(25) (av.) and Li---O = 1.915(10) Å.  相似文献   

9.
The reactions of (Me2AlH)3 with Me2AsNMe2, MeAs(NMe2)2, and As(NMe2)3 were investigated as a function of time at room temperature and over the temperature range −90 to 24°C by use of 1H and 13C NMR spectroscopy. (Me2AlH)3 was found to be very reactive toward the aminoarsines, even at −90°C, and no stable Me2AlH-aminoarsine adducts were observed. Instead, the initial stages of the reactions involved AS---N bond cleavage with the generation of highly reactive AlN- and AsH-bonded species. The subsequent course of each reaction and the final arsenic-containing product distribution depended upon the original AL:N stoichiometric ratio and the respective aminoarsine. When the Al:N ratio was 1:1, the reactions were straightforward for each aminoarsine. However, in every case, [Me2AlNMe2]2 was the final AlN-containing product. Independent reactions were carried out to verify many of the proposed decomposition pathways that lead to thermodynamically stable products. The results of this study are compared with those of the analogous, previously reported (Me3Al)2-aminoarsine systems. Additionally, a new synthetic route to [Me2AlAsMe2]3 has been established from the reaction of (Me2AlH)3 with Me2AsH.  相似文献   

10.
Palladium, silver and palladium–silver catalysts supported on silica were prepared by coimpregnation of support with solution of AgNO3 and Pd(NO3)2. The catalysts were characterized by X-ray powder diffraction (XRD), temperature programmed reduction (TPR), time of flight ion mass spectrometry (ToF-SIMS), chemisorption of carbon monoxide and were tested in the reaction of selective oxidation of glucose to gluconic acid.

XRD and TPR studies have shown that an interaction between Pd and Ag on the surface of silica after oxidation at 500 °C and reduction at 260 °C leads to the formation of solid solutions.

ToF-SIMS images of the surface of 5% Ag/SiO2 catalyst after oxidation at 500 °C and reduction at 260 °C show that Ag atoms supported on silica are not distributed homogenously but tend to form regions of enhanced Ag concentration. Positive ions images of the surface of 5% Pd/SiO2 catalyst also display regions of enhanced concentration of Pd atoms, but they are more homogenously distributed on silica.

ToF-SIMS peak intensity ratio 108Pd+/107Ag+ for bimetallic 5% Pd–5% Ag/SiO2 catalysts has a lower value than that obtained for physical mixture 5% Pd/SiO2–5% Ag/SiO2 which indicates that the surface of bimetallic catalyst is enriched with silver atoms.  相似文献   


11.
The reactivity of Cp2ZrCl2 towards partially dehydroxylated silica was evaluated and the effects of chemical modification of this silica were studied. Different modified silicas were prepared by reaction of the original partially dehydroxylated silica with silicon ethers, EtOSiMe3 and (Me3Si)2O, or a silazane, (Me3Si)2NH. The resulting materials were activated with MAO and the catalytic systems were evaluated in ethylene polymerization. The different reactions were monitored by FT-IR spectroscopy. The catalysts were characterized by elemental analysis as well as by infrared and UV–vis spectroscopy. Grafting of organosilanes occurs by reaction with reactive siloxane bridges. The new SiR3 groups formed on the surface react with Cp2ZrCl2 to form volatile ClSiMe3 and oxo zirconium species. These latter species are active, after the addition of MAO, in ethylene polymerization. The effects caused by changing the nature of the modifier in the grafting reaction with the metallocene, as well as the catalytic activities of the resulting materials, are presented and discussed.  相似文献   

12.
The reaction of Re2(CO)8(μ-H)2 with CH2(NMe2)2 in chloroform at 25°C yielded the new compound Re2(CO)8(NHMe2)(Cl)(μ-H) (1) in 31% yield. Compound 1 was characterized by IR, 1H NMR and a single-crystal X-ray diffraction analysis. Crystal data: orthorhombic, Pbca, a = 13.787(4), b = 19.884(5), c = 12.296(2) Å. Solution by direct methods (MITHRIL), R = 0.035 for 1800 reflections. The complex contains two rhenium atoms linked by an unsupported hydride bridge, Re Re = 3.362(1) Å, Re(1)---H = 1.8(1) Å and Re(2)---H = 2.0(1) Å. A chloride ligand abstracted from the solvent is terminally bonded to Re(1), and a dimethylamine ligand abstracted from the CH2(NMe2)2 is coordinated to Re(2). When heated to 68°C, the dimethylamine ligand was eliminated and the chloride ligand became a bridge in the new compound Re2(CO)8(μ-H)(μ-Cl) (2), yield 76%.  相似文献   

13.
The reaction of the metallocene dichlorides Cp2MCl2 (Cp = η5-C5H5; M = Ti, Zr, Hf, Mo, W) and Cp2′TiCl2 (Cp′ = η5-C5H4CH3) with equimolar amounts of dilithium-benzene-o-diselenolate, 1,2-(LiSe)2C6H4, gives the chelate complexes Cp2M(Se2C6H4) (M = Ti (I), Zr (II), Hf (III), Mo (IV), W (V)) and Cp2′Ti(Se2C6H4) (VI). CpTiCl3 reacts with 1,2-(LiSe)2C6H4 to give CpTiCl(Se2C6H4) (VII). The ring inversion activation parameters for I–VI can be determined by means of temperature-dependent 1H NMR spectroscopy in solution. The fragmentation behaviour of I–VII in the mass spectrometer has been investigated by pursuing metastable transitions, using linked-scan techniques.  相似文献   

14.
In order to understand the nature of the putative cationic 12-electron species [M(η51-C5R4SiMe2NR′)R″]+ of titanium catalysts supported by a linked amido-cyclopentadienyl ligand, several derivatives with different cyclopentadienyl C5R4 and amido substituents R′ were studied systematically. The use of tridentate variants (C5R4SiMe2NCH2CH2X)2− (C5R4=C5Me4, C5H4, C5H3tBu; X=OMe, SMe, NMe2) allowed the NMR spectroscopic observation of the titanium benzyl cations [Ti(η51-C5Me4SiMe2NCH2CH2X)(CH2Ph)]+. Isoelectronic neutral rare earth metal complexes [Ln(η51-C5R4SiMe2NR′)R″] can be expected to be active for polymerization. To arrive at neutral 12-electron hydride and alkyl species of the rare earth metals, we employed a lanthanide tris(alkyl) complex [Ln(CH2SiMe3)3(THF)2] (Ln=Y, Lu, Yb, Er, Tb), which allows the facile synthesis of the linked amido-cyclopentadienyl complex [Ln(η51-C5Me4SiMe2NCMe3)(CH2SiMe3)(THF)]. Hydrogenolysis of the linked amido-cyclopentadienyl alkyl complex leads to the dimeric hydrido complex [Ln(η51-C5Me4SiMe2NCMe3)(THF)(μ-H)]2. These complexes are single-site, single-component catalysts for the polymerization of ethylene and a variety of polar monomers such as acrylates and acrylonitrile. Nonpolar monomers such as -olefins and styrene, in contrast, give isolable mono-insertion products which allow detailed studies of the initiation process.  相似文献   

15.
Rare earth metal sandwiched Keggin-type heteropolyoxometalates, K11[RE(PW11O39)2] (RE–PW11, RE = La, Ce, Pr, Nd, Sm, Eu, Dy and Y), were anchored onto aminosilylated mesoporous silica SBA-15 and the resulting RE–PW11/APTS/SBA-15 materials were characterized by ICP, FT-IR, XRD, N2 adsorption, 31P MAS NMR and TEM. The RE–PW11 clusters preserve their structure in the surface-modified mesopores. The catalytic activity of RE–PW11 clusters was tested on heterogeneous oxidation of cyclohexene by H2O2. The interaction between RE–PW11 and amino groups grafted on the channel surface of SBA-15 leads to strong immobilization of RE–PW11 due to the introduction of the rare earth metal centre, which is against the leaching during the reaction.  相似文献   

16.
Solution NMR studies of silyl cations [ArSiMe2]+X (X = I, CF3SO3) incorporating the terdentate aryl diamine ligand Ar - C6H3− 2,6-(CH2NMe2)2 have been carried out in a protic solvent (methanol-d4) and in an aprotic solvent (CD2Cl2). This study has shown that the structure of these silyl cations is highly dependent on the solvent. In CD2Cl2, the silyl cation is five-coordinated owing to the coordination of one NMe2 group and of the anion to the silicon centre which gives rise to a dissymmetric structure. On the other hand, in CD3OD there is no coordination of the anion, but the silyl cation is also probably five-coordinated due to the coordination of the solvent to the silicon atom which is supported by the X-ray analysis of the compound 9. With the weakly nucleophilic anion BPh4 in CD2Cl2, in addition to the silyl cation previously described, another five-coordinated silyl cation resulting from the coordination of both NMe2 groups to the Si centre was postulated.  相似文献   

17.
The reaction of Ge[N(SiMe3)2]2 with calix[6]arene furnishes a novel macrocyclic product having two divalent germanium atoms incorporated into a Ge2NO rhombus which contains a μ2-oxygen atom and a μ2-NH2 group. The crystal structure of the product indicates the presence of a conformationally rigid molecule where three of the six oxygen atoms of the calix[6]arene are bound to the germanium atoms while the remaining three have been converted into –OSiMe3 or unusual –OSi(H)(NH2)2 groups. Spectral (1H, 13C, and 29Si NMR) data in solution are consistent with the solid-state structure and indicate the germanium calix[6]arene retains its structure in solution.  相似文献   

18.
Two new half-sandwich zirconium(IV) complexes bearing salicylaldimine ligands of the type Cp*Zr[2-tBu-4-R-6-(CH=NiPr)C6H2O]C12[R=H(1), tBu(2)] were prepared by the reaction of Cp*ZrC13 with the corresponding lithium of salicylaldimine ligands 2-tBu-4-R-6-(CH=NiPr)C6H2OLi[R=H(LiLa), tBu(LiLb)]. Com- plexes 1 and 2 were characterized by 1H NMR, BC NMR spectroscopy and elemental analysis. When activated with AliBu3 and Ph3CB(C6F5)4, both complexes 1 and 2 exhibited reasonable catalytic activities for ethylene polymeriza- tion, producing polyethylenes with moderate molecular weight. Complexes 1 and 2 also exhibited reasonable catalyt- ic activities for ethylene copolymerization with 1-hexene, producing poly(ethylene-co-l-hexene)s with moderate molecular weight and reasonable 1-hexene content.  相似文献   

19.
The epoxidation of cyclopentene with hydrogen peroxide catalyzed by 12-heteropolyacids of molybdenum and tungsten (H3PMo12−nWnO40, n = 1–11), 12-tungstophosphoric acid and 12-molybdophosphoric acid combined with cetylpyridinium bromide as a phase transfer reagent was carried out in acetonitrile. Among 13 heteropolyacids investigated, catalyst of H3PMo6W6O40 showed the highest activity, giving a conversion of 60% and a selectivity of 95% in the epoxidation of cyclopentene. The fresh catalysts and the catalysts under reaction condition were characterized by UV–vis, FT-IR and 31P NMR spectroscopy, which has revealed that all of the molybdotungstophosphoric acids were degraded in the presence of hydrogen peroxide to form a considerable amount of phosphorus-containing species. The active species resulted from H3PMo6W6O40 are new kinds of phosphorus-containing species, which is different from {PO4[WO(O2)2]4}3−.  相似文献   

20.
本文用13C NMR法系统研究了溶液中顺式二氯二氨合铂与胸苷、胞苷、鸟苷和5'-腺嘌呤单核苷酸的作用,确定了不同条件下形成配合物的组成及其分子申铂原子与配体的成键方式。在中性介质中顺铂分别与胸苷、胞苷作用,生成N3配位的顺-[Pt(NH3)2(ThyH-1)2]和顺-[Pt(NH3)2(Cyt)2]2+;与鸟苷随摩尔比不同相应生成顺-[Pt(NH3)2(N2-Guo)2]2+和[Pt(NH3)2(N2,N1-GuoH-1)]nn+,当pH=3和摩尔比为1时,尚有微量[Pt(NH3)2(N7,O(C6)Guo)]2+生成;在中性介质中顺铂与5'-AMP亦随摩尔比不同,生成顺-[Pt(NH3)2(N7-5'-AMP)2]2-或兼生成顺-[Pt(NH3)2(N7,N1-5'-AMP)]n。根据所得结果讨论了顺铂抗癌作用机制,提出了顺铂可能与DNA同一链上相邻二个鸟嘌呤基上的N7N1键合形成链内交联的新机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号