首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electrochemical oxidation of 1,4-dihydroxyanthraquinone has been studied in the presence of acetylacetone and benzoylacetone as nucleophiles in a mixture of ethanol/water by means of cyclic voltammetry as a diagnostic technique.The results indicate the participation of electrochemically produced anthraquinone in the Michael addition reaction with acetylacetone and benzoylacetone to form the corresponding new anthraquinone derivatives.On the basis of the EC mechanism,the observed homogeneous rate constants(kobs)of the reaction of anthraquinone with acetylacetone and benzoylacetone were estimated by comparing the experimental cyclic voltammograms with the digitally simulated results.  相似文献   

2.
Electrochemical oxidation of 3,4-dihydroxybenzoic acid (1) in the presence of 1,3-dimethylbarbituric acid (2) and 1,3-diethyl-2-thiobarbituric acid (3) as nucleophiles in aqueous solution has been studied using cyclic voltammetry and controlled-potential coulometry. The results indicate that 1 via Michael reaction under electro-decarboxylation reaction converts to benzofuro[2,3-d]pyrimidine derivatives (6a, 6b). The electrochemical synthesis of 6a, 6b has been successfully performed in an undivided cell in good yields and purity.  相似文献   

3.
A new method has been developed for the Michael addition of nitrogen- and carbon-containing nucleophiles to cyclic enones. Using this conjugate addition reaction, a variety of different nucleophiles can react with a range of cyclic enones in the presence of p-toluenesulfonic acid under solvent-free ultrasound irradiation conditions affording the corresponding C–N or C–C adducts in good to excellent yields. Comparatively, performing the reaction under ultrasound irradiation gives higher yields, is more efficient and environmentally benign than performing it at high pressure.  相似文献   

4.
Electrochemical oxidation of catechols has been studied in the presence of Meldrum's acid derivatives as nucleophiles in aqueous solution, by means of cyclic voltammetry and controlled-potential coulometry. Catechols in the Michael addition reaction react with Meldrum's acids to form adducts that can undergo electrooxidation. Such products were obtained in good yields as confirmed by controlled potential electrosynthesis. Such products can be generated in aqueous solutions by means of electrosynthesis, using a carbon electrode in an undivided cell. Furthermore, the homogeneous rate constants of the chemical reaction interposed between electron transfers were estimated by comparing the experimental cyclic voltammetric curves with the digitally simulated ones.  相似文献   

5.
A reversible Michael addition reaction between thiol nucleophiles and cyanoenones has been previously postulated to be the mechanism‐of‐action of a new family of reversible covalent drugs. However, the hypothetical Michael adducts in this mechanism have only been detected by spectroscopic methods in solution. Herein, the crystallographic observation of reversible Michael addition with a potent cyanoenone drug candidate by means of the crystalline‐sponge method is reported. After inclusion of the cyanoenone substrate, the sponge crystal was treated with a thiol solution. Subsequent crystallographic analysis confirmed the single‐crystal‐to‐single‐crystal transformation of the substrate into the impermanent Michael adduct.  相似文献   

6.
The catalytic direct Michael addition of cyclic 1,3-dicarbonyl compounds and enamines to unsaturated 2-ketoesters is presented. A series of different 4-hydroxycoumarins, 4-hydroxy-6-methyl-2-pyrone, 3-hydroxy-1H-phenalene-1-one, 2-hydroxy-1,4-naphthoquinone, 5,5-dimethyl-1,3-cyclohexanedione, and various enamines of cyclic 1,3-diketones all add to unsaturated 4-substituted 2-ketoesters in an enantioselective manner. The reaction is catalyzed by chiral bisoxazoline-copper(II) complexes and proceeds in the absence of base to afford Michael adducts in good to high yields and with up to 98% ee. The products formed are substructures found in skeletons of important biological and pharmaceutical molecules. The scope and potential of the new reaction are discussed as well as the mechanism for the catalytic enantioselective reaction.  相似文献   

7.
M. Shyam Sundar 《合成通讯》2014,44(24):3582-3593
A biphenyl-based ligand attached was synthesized and screened in copper-mediated Michael reaction. The catalyst system works well with carbon or sulfur nucleophiles as Michael donors and cyclohexenone or chalcones as the acceptors under mild and neutral reaction conditions in a chemoselective manner.  相似文献   

8.
The electrochemical synthesis of some new sulfonamide derivatives was carried out via the electrochemical oxidation of 2,3-dihydrophthalazine-l,4-dione (1) in the presence of arylsulfinic acids (2a and 2b) as nucleophiles. The results show that, the electrogenerated phthalazine-l,4-dione (lox) participates in a Michael type addition reaction with 2a or 2b and via an EC mechanism to produce the corresponding sulfonamide derivatives. This method provides a one-pot procedure for the synthesis of new sulfonamide derivatives of potential biological significance in good yields without using toxic reagents at a carbon electrode in an environmentally friendly manner.  相似文献   

9.
ALY  A.A 《中国化学》2003,21(3):339-346
Quinazoline isothiocyanate 1 reacts with various nucleophiles(nitrogen nucleophiles,oxygen nucleophiles and sulphur nucleophiles)to afford heterocyclic systemes 2-13,Also,the [4 2] cycloaddition reaction of 1 with phenyl isocyanate,benzylidene aryl amine and cinnamic acid derivatives gave novel heterocyclic compounds 14-16,Moreover,the reaction of 1 with active methylene compounds under Michael reaction conditions also was investigated to yield 17 and 18 and it was found that all these reactions proceede via isothiocyanate heterocyclization to furnish non-condensed heterocyclic compoundes,Some of the newly synthesized compounds were tested for their antimicrobial activities.  相似文献   

10.
Conjugate addition of heteroatom nucleophiles to carbon-carbon double bonds conjugated with a strong electron-withdrawing group is one of the most important new bond-forming strategies in synthetic organic chemistry. Among the methods for these Michael additions, Lewis acids have shown the best promoter activity, and in particular, the use of reagents impregnated over inorganic supports is rapidly increased. With the increase of environmental consciousness in chemical research, the solvent-free Michael addition has attracted our attention. In continuation of our ongoing program to develop synthetic protocols utilizing cerium trichloride, we report an extension of the CeCl(3).7H(2)O/NaI combination supported under solvent-free conditions to promote heteroatom Michael addition. Using neutral alumina (Al(2)O(3)) as solid support permits us to circumvent some of the problems associated with the procedure where the inorganic support is silica gel. The CeCl(3).7H(2)O/NaI/Al(2)O(3) system works well for hetero-Michael additions utilizing weakly nucleophiles such as imidazoles and carbamates, and also the reaction proceeds with good yields in the case of Michael acceptors different from alpha,beta-unsaturated carbonyl compounds. An important synthetic application of this our methodology is the intramolecular aza-Michael reaction in producing 4-piperidinone derivatives, which are of interest as synthetic intermediates toward important classes of heterocycles.  相似文献   

11.
以4-甲氧基-2-溴代丁烯内酯为合成子,在温和条件下与不同的亲核试剂通过串联的双Michael加成及分子内的亲核取代反应,得到螺环-环丙烷类化合物8a~8d.通过元素分析,IR,1HNMR,13CNMR和MS对化合物进行了结构表征,其中化合物8d经单晶X射线衍射测定,确定了其立体化学结构.  相似文献   

12.
Electrochemical oxidation of several catechols is studied in the presence of 4(6)-aminouracil (3a) and 6-amino-1,3-dimethyl uracil (3b) as nucleophiles in aqueous solution using cyclic voltammetry and controlled-potential coulometry. The results reveal that quinones derived from catechols participate in Michael additions with 3a and 3b to give the corresponding catecholamine derivatives via an electron transfer followed by chemical reaction (EC) mechanistic pathway in good yields and purities.  相似文献   

13.
Highly reactive lipid peroxidation‐derived carbonyls (oxoLPP) modify protein nucleophiles via Michael addition or Schiff base formation. Once formed, Michael adducts can be further stabilized via cyclic hemiacetals with or without loss of water. Depending on the mechanism of their formation, peptide–oxoLPP can carry aldehyde or keto groups and thus be a part of the total protein carbonylation level. If a carbonyl function is lost during consecutive reactions, the oxoLPP–peptide adducts will not be detected using the common carbonyl labeling protocols. Because of the differences in adduct stabilities, it is possible to address the heterogeneity of peptide/protein–oxoLPP adducts by careful evaluation of tandem mass spectra of modified peptides. Here, we used hydrophilic interaction liquid chromatography–tandem mass spectrometry analysis of lysine, cysteine and histidine containing model peptides co‐incubated with oxidized 1‐palmitoyl‐2‐linoleoyl‐sn‐glycerophosphatidylcholine to characterize the collision‐induced dissociation behavior of peptide–carbonyl adducts. Numerous modifications were detected based on the analysis of tandem mass spectra, including Schiff bases on lysine (two), Michael adducts on lysine (six), cysteine (eleven) and histidine (two), as well as 4‐hydroxy‐2‐aldehydes derived dehydrated cyclic hemiacetals on cysteine (five) and histidine (one). Additionally, cysteine and histidine side chains were modified by lipid‐bound aldehydes as Michael adducts and dehydrated hemiacetals. The tandem mass spectra revealed collision‐induced dissociation characteristics specific for each class of oxoLPP–peptide adducts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Designed transition metal complexes predominantly catalyze Michael addition reactions. Inorganic and organic base‐catalyzed Michael addition reactions have been reported. However, known base‐catalyzed reactions suffer from the requirement of solvents, additives, high pressure and also side‐reactions. Herein, we demonstrate a mild and environmentally friendly strategy of readily available KOtBu‐catalyzed Michael addition reactions. This simple inorganic base efficiently catalyzes the Michael addition of underexplored acrylonitriles, esters and amides with (oxa‐, aza‐, and thia‐) heteroatom nucleophiles. This catalytic process proceeds under solvent‐free conditions and at room temperature. Notably, this protocol offers an easy operational procedure, broad substrate scope with excellent selectivity, reaction scalability and excellent TON (>9900). Preliminary mechanistic studies revealed that the reaction follows an ionic mechanism. Formal synthesis of promazine is demonstrated using this catalytic protocol.  相似文献   

15.
TiCl2(OTf)-SiO2 is simply prepared by immobilization of TiCl3(OTf) on silica gel surface and introduced as a non-hygroscopic Lewis acid catalyst for C-N and C-C bond formation via Michael addition reaction. A variety of structurally diverse nitrogen nucleophiles including α-aminophosphonates, aliphatic and aromatic amines and imidazole were evaluated as Michael donors. Friedel–Crafts alkylation of indoles and pyrrole was also investigated through Michael addition reaction in the presence of TiCl2(OTf)-SiO2 as a catalyst. The reactions were conducted at room temperature or 60 °C under solvent-free conditions and the desired Michael adducts were obtained in high to excellent yields.  相似文献   

16.
Electrochemical oxidation of N,N-dialkyl-p-phenylenediamines have been studied in the presence of arylsulfinic acids as nucleophiles in aqueous solutions. The results indicate that the electrochemically generated quinone-imines participate in Michael type addition reaction with arylsulfinic acids and via an EC mechanism convert to the corresponding new sulfonamide derivatives. In this work, an efficient and one-pot electrochemical method for the synthesis of new sulfonamide derivatives in aqueous solution is reported.  相似文献   

17.
Activated 3-substituted isoindolinones have proved to be efficient nucleophiles in K2CO3-catalyzed Michael reactions of several types of electron-deficient olefins. Moreover, tricyclic pyrrolizidines have been conveniently synthesized via a modification of the described general protocol as a consequence of a cascade Michael/cyclization reaction of unsaturated aldehydes.  相似文献   

18.
The electrochemical oxidation of catechols ( 1 ) have been studied in the presence of diaza‐18‐crown‐6 (DA18C6) ( 3a ), diaza‐15‐crown‐5 (DA15C5) ( 3b ), and aza‐15‐crown‐5 (A15C5) ( 3c ) as nucleophiles in aqueous solution, by means of cyclic voltammetry and controlled‐potential coulometry. The results indicate the participation of electrochemically generated o‐benzoquinones ( 2 ) in Michael‐type reaction with aza‐crown ethers ( 3 ) to form the corresponding new o‐benzoquinone‐aza‐crown ether adducts ( 5 ). Based on ECE mechanism, the observed homogeneous rate constants (kobs) of the reaction of o‐bezoquinones ( 2 ) with aza‐crown ethers ( 3 ) were estimated by comparing the experimental cyclic voltammograms with the digital simulated results. The calculated observed homogeneous rate constants (kobs) was found to vary in the order DA18C6>DA15C5>A15C5.  相似文献   

19.
《Electroanalysis》2003,15(20):1639-1644
Electrochemical oxidation of 3,4‐dihydroxybenzoic acid ( 1 ) and 4‐tert‐butylcatechol ( 5 ) in the presence of 4‐hydroxy‐6‐methyl‐2‐pyrone ( 2 ) as nucleophile in aqueous solution has been studied using cyclic voltammetry and controlled‐potential coulometry. The results indicate that 1 via Michael reaction under electro‐decarboxylation reaction converts to heterocyclic compound 4 , and the quinone derived from 4‐tert‐butylcatechol ( 5 ) participates in Michael reaction with 2 and through an ECE mechanism converts to the corresponding o‐quinone ( 6a ). The electrochemical synthesis of 4 and 6a has been successfully performed in an undivided cell.  相似文献   

20.
The first two stable enantiomerically pure chiral N-H oxaziridines, derived from camphor and fenchone, are shown to act as electrophilic sources of nitrogen upon reaction with various carbon nucleophiles. Nitrogen is transferred, together with the camphor/fenchone unit, when deprotonated esters, malonates, and nitriles are used as nucleophiles. One of the ester or nitrile units in the substrate usually undergoes hydrolysis; a cyclic mechanism is proposed to account for this observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号