首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With evolution, Nature has ingeniously succeeded in giving rise to an impressive variety of inorganic structures. Every organism that synthesizes biogenic minerals does so in a form that is unique to that species. This biomineralization is apparently biologically controlled. It is thus expected that both the synthesis and the form of every specific biogenic mineral is genetically determined and controlled. An investigation of the mechanism of biomineralization has only become possible with the development of modern methods in molecular biology. Unicellular organisms such as magnetic bacteria, calcareous algae, and diatoms, all of which are amongst the simplest forms of life, are particularly suited to be investigated by these methods. Crystals and composites of proteins and amorphous inorganic polymers are formed as complex structures within these organisms; these structures are not known in conventional inorganic chemistry.  相似文献   

2.
3.
From self-organizing polymers to nanohybrid and biomaterials   总被引:3,自引:0,他引:3  
Block copolymers form a large number of superlattices with characteristic dimensions in the range of a few nanometers up to several micrometers by self-organization. The interplay of supramolecular physics and chemistry opens up new approaches to the production of inorganic, organic, and biological structures and to their integration into functional units. Possible applications in the fields of materials science and molecular biology are being investigated. Block copolymers find numerous applications from the production of inorganic nanoparticles (metals, semiconductors, magnets) and mesoporous materials up to take-up/release systems in chemo- and gene therapy.  相似文献   

4.
羟基聚合铝的研究在环境化学中具有重要作用。自然条件下存在的无机单核铝本身具有毒性,而多核铝是比单核铝更毒的铝形态,它们很容易进入人体和植物产生毒害作用。因此,水解聚合铝形态研究一直是环境化学、地球化学和材料催化等众多研究领域的前沿热点课题。本文综述了在新环境材料开发中羟基聚合铝晶体研究的进展,对已获得表征的典型羟基聚合铝的结构特点进行了对比与评述,讨论了不同羟基聚合铝晶体的科学意义和应用价值。  相似文献   

5.
受生物启发模拟合成生物矿物材料及其机理研究进展   总被引:3,自引:0,他引:3  
自然界中存在大量复杂、高度功能化的生物矿物材料如贝壳、珍珠、牙齿、骨骼等,其中很多是非常普通的无机矿物材料。运用仿生合成的思路来制备形貌可控、结构特殊且具有独特性质的材料一直是交叉学科研究的热点,如何模拟生物矿化方法合成功能化材料,正逐渐引起科学界的关注。碳酸钙等生物矿物材料广泛存在于生物和地质体系中,对生物体的特异功能起着极其重要的作用。本文将重点回顾有关碳酸钙等生物矿物材料的生物模拟合成研究的进展。生物矿物合成的微环境主要包括模板和溶液相。本文即从这两方面着手,评述了近年来利用软、硬模板法模拟合成生物矿物的研究进展。  相似文献   

6.
The literature on inorganic open-framework materials abounds in the synthesis and characterization of metal silicates, phosphates and carboxylates. Most of these materials have an organic amine as the template. In the last few years, it has been shown that anions such as sulfate, selenite and selenate can also be employed to obtain organically templated open-framework materials. This tutorial review provides an up-to-date survey of organically templated metal sulfates, selenites and selenates, prepared under hydrothermal conditions. The discussion includes one-, two-, and three-dimensional structures of these materials, many of which possess open architectures. The article should be useful to practitioners of inorganic and materials chemistry, besides students and teachers. The article serves to demonstrate how most oxy-anions can be used to build complex structures with metal-oxygen polyhedra.  相似文献   

7.
《Solid State Sciences》2001,3(7):745-774
Among the inorganic materials enjoying widespread contemporary interest, the metal oxide based solid phases occupy a prominent position by virtue of their applications to catalysis, sorption, molecular electronics, energy storage, optical materials and ceramics. The diversity of properties associated with these materials reflects the chemical composition, which allows variations in covalency, geometry and oxidation states, and the crystalline architecture, which may provide different pore structures, coordination sites, or juxtapositions of functional groups. Despite such fundamental and practical significance, the design of the structure of such materials remains a challenge in solid state chemistry. While organic materials have been synthesized which self-assemble into ordered arrays at low temperature and which exhibit molecular recognition and biomimetic activity, the ability to synthesize inorganic materials by rational design remains elusive. Small, soluble molecular building blocks with well-defined reaction chemistries which allow their low-temperature assembly into crystalline solid state inorganic materials are not well known. However, the existence of naturally occurring, structurally complex minerals establishes that hydrothermal synthesis can provide a low temperature pathway to produce open-framework and layered metastable structures utilizing inorganic starting materials. Thus, hydrothermal conditions have been used to prepare microporous tetrahedral framework solids that are capable of shape-selective absorption, like zeolites and aluminophosphates, and more recently in the preparation of complex solid arrays of the M/O/PO3−4 and M/O/RPO2−3 systems (M=V and Mo). The hydrothermal technique may be combined with the introduction of organic components which may act as charge compensating groups, space-filling units, structure directing agents, templates, tethers between functional groups, or conventional ligands in the preparation of inorganic/organic composites.In the past decade, this general strategy has been exploited in the evolution of a family of vanadium oxides incorporating structure-directing organic or secondary-metal organic subunits, which are the topic of this review. The synthetic approach to novel vanadium oxide solids occupies the interface between materials science and coordination chemistry. The emerging theme focuses on the association of an organic component, acting as a ligand, tether, or structure directing moiety, with the inorganic framework of the solid to provide unique composites. While some organic components may limit the size of inorganic cluster subunits of a solid by passivating the surface of an aggregate through capping, such ligands may also serve to link inorganic subunits into complex networks. In other cases, the organic subunit, rather than participating as a covalently bound unit of the framework, acts in a structure directing role, producing amphiphilic materials whose structures are determined by hydrophobic–hydrophilic interactions. This latter feature is reminiscent of the factors influencing biomineralization, a field which may prove relevant to the development of new strategies for the controlled synthesis of organized inorganic and organic/inorganic composite materials. These various approaches to the “design” of inorganic solids are discussed and assessed in terms of the new structural types recently observed in the vanadium oxide chemistry.  相似文献   

8.
This tutorial review surveys the wide variety of oligomeric hydroxide structures formed from aluminum, gallium, and indium. Both inorganic and ligand-supported structures are reviewed, providing a leading introduction to this research area. In addition to homometallic clusters comprising only one metal type, a series of heterometallic structures are described. This review highlights the synthesis and characterization of these nanoscale cluster compounds that have implications in a variety of fields, including catalysis, mineral mimicry, environmental chemistry, geochemistry, materials science, and semiconductors.  相似文献   

9.
Ion transport behaviours through cell membranes are commonly identified in biological systems, which are crucial for sustaining life for organisms. Similarly, ion transport is significant for electrochemical ion storage in rechargeable batteries, which has attracted much attention in recent years. Rapid ion transport can be well achieved by crystal channels engineering, such as creating pores or tailoring interlayer spacing down to the nanometre or even sub-nanometre scale. Furthermore, some functional channels, such as ion selective channels and stimulus-responsive channels, are developed for smart ion storage applications. In this review, the typical ion transport phenomena in the biological systems, including ion channels and pumps, are first introduced, and then ion transport mechanisms in solid and liquid crystals are comprehensively reviewed, particularly for the widely studied porous inorganic/organic hybrid crystals and ultrathin inorganic materials. Subsequently, recent progress on the ion transport properties in electrodes and electrolytes is reviewed for rechargeable batteries. Finally, current challenges in the ion transport behaviours in rechargeable batteries are analysed and some potential research approaches, such as bioinspired ultrafast ion transport structures and membranes, are proposed for future studies. It is expected that this review can give a comprehensive understanding on the ion transport mechanisms within crystals and provide some novel design concepts on promoting electrochemical ion storage capability in rechargeable batteries.  相似文献   

10.
光子晶体的分析化学应用研究新进展   总被引:1,自引:0,他引:1  
陈蕴  郭振朋  王进义  陈义 《色谱》2014,32(4):336-342
光子晶体具有规则的堆积结构、纳米级别的孔径和新颖的光学性质,在工程、物理、化学以及生物学等研究中均有重要的研究与开发价值。本文从分析化学应用研究角度对其进行了审视,综述了最近5年多以来光子晶体在传感与分离分析方法发展中应用的最新进展。  相似文献   

11.
Polymorphism in crystals is known since 1822 and the credit goes to Mitscherlich who realized the existence of different crystal structures of the same compound while working with some arsenate and phosphate salts. Later on, this phenomenon was observed also in organic crystals. With the advent of different technologies, especially the easy availability of single crystal XRD instruments, polymorphism in crystals has become a common phenomenon. Almost 37 % of compounds (single component) are polymorphic to date. As the energies of the different polymorphic forms are very close to each other, small changes in crystallization conditions might lead to different polymorphic structures. As a result, sometimes it is difficult to control polymorphism. For this reason, it is considered to be a nuisance to crystal engineering. It has been realized that the property of a material depends not only on the molecular structure but also on its crystal structure. Therefore, it is not only of interest to academia but also has widespread applications in the materials science as well as pharmaceutical industries. In this review, we have discussed polymorphism which causes significant changes in materials properties in different fields of solid-state science, such as electrical, magnetic, SHG, thermal expansion, mechanical, luminescence, color, and pharmaceutical. Therefore, this review will interest researchers from supramolecular chemistry, materials science as well as medicinal chemistry.  相似文献   

12.
Molecules with Möbius topology have drawn increasing attention from scientists in a variety of fields, such as organic chemistry, inorganic chemistry, and material science. However, synthetic difficulties and the lack of functionality impede their fundamental understanding and practical applications. Here, we report the facile synthesis of an aggregation‐induced‐emission (AIE)‐active macrocycle (TPE‐ET) and investigate its analogous triply and singly twisted Möbius topologies. Because of the twisted and flexible nature of the tetraphenylethene units, the macrocycle adjusts its conformations so as to accommodate different guest molecules in its crystals. Moreover, theoretical studies including topological and electronic calculations reveal the energetically favorable interconversion process between triply and singly twisted topologies.  相似文献   

13.
Indirect high resolution electron microscopy using one of several possible data-set geometries offers advantages over conventional high-resolution imaging in enabling the recovery of the complex wavefunction at the specimen exit plane and simultaneously eliminating the aberrations present in the objective lens. This article discusses results obtained using this method from structures formed by inorganic materials confined within the bores of carbon nanotubes. Such materials are shown to be atomically regulated due to their confinement, leading to integral layer architectures that we have termed "Feynman crystals." These one-dimensional (1D) crystals also show a wide range of structural deviations from the bulk, including unexpected lattice distortions, and in some cases entirely new forms have been observed.  相似文献   

14.
金属有机框架材料的研究进展   总被引:1,自引:0,他引:1  
金属有机框架(metal-organic frameworks,MOFs)材料是一类由有机配体与金属中心经过自组装形成的具有可调节孔径的材料。与传统无机多孔材料相比,MOFs材料具有更大的比表面积,更高的孔隙率,结构及功能更加多样,因而已经被广泛应用于气体吸附与分离、传感器、药物缓释、催化反应等领域中。新兴材料的出现极大地促进了各个学科间的相互发展,本文综述了近年来MOFs材料的研究发展,包括MOFs材料自身的特点、国内外发展现状、应用领域以及复合MOFs材料的研究热点,并对今后的发展进行了展望。  相似文献   

15.
The controlled synthesis of inorganic micro- and nanostructures with tailored morphologies and patterns has attracted intensive interest because the properties and performances of micro- and nanostructured materials are largely dependent on the shape and structure of the primary building blocks and the way in which the building blocks are assembled or integrated. This review summarizes the recent advances on the solution-phase synthesis of inorganic micro- and nanostructures with controlled morphologies and patterns via three typical colloidal chemical routes, i.e., synthesis based on catanionic micelles, reactive templates, and colloidal crystal templates, with focus on the approaches developed in our lab. Firstly, catanionic micelles formed by mixed cationic/anionic surfactants are used as effective reaction media for the shape-controlled synthesis of inorganic nanocrystals and the solution growth of hierarchical superstructures assembled by one-dimensional (1D) nanostructures. Secondly, reactive template-directed chemical transformation strategy provides a simple and versatile route to fabricate both hollow structures and 1D nanostructures. Thirdly, colloidal crystals are employed as very effective templates for the facile solution-phase synthesis of novel inorganic structures with controlled patterns, such as three-dimensionally (3D) ordered macroporous materials and two-dimensionally (2D) patterned nanoarrays and nanonets. Finally, a brief outlook on the future development in this area is presented.  相似文献   

16.
With one or two exceptions, biological materials are "soft", meaning that they combine viscous and elastic elements. This mechanical behavior results from self-assembled supramolecular structures that are stabilized by noncovalent interactions. It is an ongoing and profound challenge to understand the self-organization of biological materials. In many cases, concepts can be imported from soft-matter physics and chemistry, which have traditionally focused on materials such as colloids, polymers, surfactants, and liquid crystals. Using these ideas, it is possible to gain a new perspective on phenomena as diverse as DNA condensation, protein and peptide fibrillization, lipid partitioning in rafts, vesicle fusion and budding, and others, as discussed in this selective review of recent highlights from the literature.  相似文献   

17.
Many inorganic materials can form crystals, but little is known about their enantioselective crystallization. Herein, we report on the enantioselective crystallization of ϵ-Zn(OH)2 (Wulfingite) chiral crystals by using amino acids. Crystals of ϵ-Zn(OH)2 were crystallized from supersaturated sodium hydroxide and zinc nitrate aqueous solutions in the presence of l - or d -arginine. All of the chiral measurements, such as selective chiral adsorption by circular dichroism (CD), chiral chromatography, and polarimetry measurements, clearly show chiral discrimination during the crystallization of ϵ-Zn(OH)2. In addition, a new method has been developed for identifying chirality in crystals by using electron paramagnetic resonance (EPR). Although the values of chiral induction of the ϵ-Zn(OH)2 crystals obtained are somewhat low, these values are still significant because they demonstrate that enantioselectivity during the crystallization of chiral inorganic crystals with chiral additives can be achieved. The method can be applied to many chiral inorganic systems. Understanding and controlling the crystallization of chiral inorganic crystals is important for gaining knowledge on the interaction of chiral molecules with inorganic surfaces. This knowledge can lead to an understanding of basic scientific questions such as the evolution of homochirality in biomolecules and the development of chiral inorganic crystals for a variety of purposes such as asymmetric catalysis and optical applications.  相似文献   

18.
Copper(I) halide organic-inorganic hybrid luminescent materials have many advantages, such as diverse structure, facile synthesis, high luminescent efficiency, tunable optical performance, etc., and show a broad application prospect in energy-saving lighting, display and other fields. However, compared with commercial rare-earth-metal-based phosphors, the reported hybrids generally suffer from poor stability and low luminescent efficiency, which are the bottleneck problem of their practical application. With the aim of developing high-performance organic-inorganic hybrid luminescent materials, a new synthesis strategy has been reported. This strategy can systematically design and synthesis copper(I) halide ionic hybrid structures by combining the covalent bonding and ionic bonding between inorganic and organic components into one structure, and use their synergistic effect to optimizing their properties. This design method is expected to develop high-performance organic-inorganic hybrid luminescent materials, promote the in-depth understanding of this field, and provide new ideas for the optimization of other types of hybrid materials.  相似文献   

19.
It is well known that different forms of solid-state polymorphic materials exhibit diverse physicochemical properties. The variations in the wetting and surface energetics of a pair of organic polymorphic solids are reported in detail here for the first time. The growth of macroscopic single crystals (facet area >1 cm(2)) of paracetamol has enabled for the first time the direct measurement of advancing contact angles, theta(A) for water and diiodomethane on a range of specific facets for two polymorphs; forms I and II. Not only was the wetting behavior found to be anisotropic, as has been recently reported, but the differing polymorphic forms exhibited significant variations in their wetting behavior for the same Miller indexed faces. The (001), (010), and (110) faces were studied, and the observed wettability data differed confirming the independence of facet wettability and Miller indices for both polymorphs. theta(A) was found to be very sensitive to the local surface chemistry for each facet examined, which in turn is a direct consequence of the molecular packing and structure within the crystal lattice. On the basis of the theta(A) value of water, the hydrophilicity rankings for the facet surfaces of form II examined is: (010) approximately (110) > (001). This experimental study highlights complex surface chemistry of polymorphic solids in which anisotropic surface energies were observed for both forms of paracetamol, strongly suggesting that such anisotropic wetting behavior is the norm for organic crystalline solids. Furthermore, the same Miller indexed facets for forms I and II exhibited very different surface chemical behavior, such that it was not possible to infer understanding about one form based upon knowledge of another form.  相似文献   

20.
In recent years, chemistry of metal-nitrogen–bonded compounds have attracted tremendous attention mainly because of unusual properties resulting from such a bond involving carbon and other heteroatoms. M?N–bonded compounds, when containing group VI elements, especially selenium, has attracted great attention in materials chemistry. In addition, the increased interest in synthesis of N-containing bioactive compounds with other heteroatoms such as selenium, sulfur, etc is mainly because of their tremendous potential as antioxidants, additives, dyes for polymers, and as insecticides, in solvent extraction, and in nanotechnology. Thus, the synthesis and applications of 1,2,3-selenadiazoles have attracted recent interest of materials scientists, including nanotechnologists, pharmaceutical chemists, and organic chemists. The chemistry of 1,2,3-selenadiazoles is highly rich and has been practiced ever since its first report in 1972. Such N-containing Se-heterocycles form several types of selenadiazoles that are a rich source of selenium for semiconductor nanoparticles of metal selenides. The materials chemistry of such molecules has been documented for over three decades, and their great scope in semiconductors has emerged. This review article is an attempt to bring a variety of materials and biological application of 1,2,3-selenadiazoles for better understanding of the researchers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号