首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
顾方伟  刘海超 《催化学报》2020,(7):1073-1080
纤维素是葡萄糖通过β-1,4-糖苷键链接而成的高聚物,在木质纤维素中含量最高,结构稳定,较难水解.糖苷键的解聚主要有三种方式:酶水解、酸水解以及碱降解.酶解的优点是反应条件温和、副产物少,但存在成本高、活性低等缺点,限制了其大规模的工业化生产.碱水解纤维素的同时伴随着葡萄糖的peeling-off反应得到异变糖酸,需要消耗大量的碱,并且强碱也存在腐蚀性强和回收难等问题.酸水解是目前工业上常用的纤维素水解方法,在保持较高葡萄糖选择性的同时,通过对反应条件的控制(提高反应温度和酸浓度)来提高纤维素的水解效率,但是硫酸对设备的腐蚀性强,也难以回收,不符合绿色化学的发展要求.固体酸是近年来研究较多的纤维素水解催化剂.固体酸虽然腐蚀性弱、易回收,但是其活性低,水热稳定性较差,目前还不具备大规模生产的条件.本文发展了一种羟基自由基活化断裂糖苷键的方法,利用羟基自由基的高活性在低温下实现糖苷键的选择性断裂,同时羟基自由基与糖苷键作用后转化为无毒无害的水和氧气,将不会对环境造成污染.我们首先以纤维二糖作为纤维素的模型分子,通过羟基自由基能够优先与糖苷键反应得到葡萄糖和葡萄糖酸的实验证实所提出的方法的可行性.实验表明,来自H2O2的·OH自由基能够在铜基催化剂作用下选择性氧化断裂其糖苷键,生成葡萄糖和葡萄糖酸.比如:采用均相CuSO4体系,纤维二糖转化率约为20%时,葡萄糖和葡萄糖酸的选择性分别为28.5%和32.3%.采用多相CuO/SiO2(4 wt%CuO)体系,纤维二糖转化率约为20%时,葡萄糖和葡萄糖酸的选择性约分别为23.3%和25.7%,并且该催化剂具有良好的循环使用性能.与·OH类似,CuSO4催化过硫酸钾生成的·SO4-自由基也能够有效转化纤维二糖,在纤维二糖转化率为20%时,葡萄糖和葡萄糖酸的选择性分别为36.6%和39.9%.利用这种·OH和·SO4-自由基氧化的方法,也能够在较低温度下(333 K)解聚纤维素中的糖苷键.我们发展了H2O2浸渍预处理纤维浸渍预处理纤维素的方法,通过部分破坏纤维素糖苷键,提高了纤维素的水解活性.比如:处理后的纤维素在413 K条件下反应12 h,纤维素转化率和葡萄糖选择性分别达到约36.1%和42.5%.XRD结果表明,处理后的纤维素的晶体结构未发生明显的变化.FT-IR表征结果显示处理后的纤维素表面生成了大量的羧酸基团.  相似文献   

2.
纤维素是葡萄糖通过β-1,4-糖苷键链接而成的高聚物,在木质纤维素中含量最高,结构稳定,较难水解.糖苷键的解聚主要有三种方式:酶水解、酸水解以及碱降解.酶解的优点是反应条件温和、副产物少,但存在成本高、活性低等缺点,限制了其大规模的工业化生产.碱水解纤维素的同时伴随着葡萄糖的peeling-off反应得到异变糖酸,需要消耗大量的碱,并且强碱也存在腐蚀性强和回收难等问题.酸水解是目前工业上常用的纤维素水解方法,在保持较高葡萄糖选择性的同时,通过对反应条件的控制(提高反应温度和酸浓度)来提高纤维素的水解效率,但是硫酸对设备的腐蚀性强,也难以回收,不符合绿色化学的发展要求.固体酸是近年来研究较多的纤维素水解催化剂.固体酸虽然腐蚀性弱、易回收,但是其活性低,水热稳定性较差,目前还不具备大规模生产的条件.本文发展了一种羟基自由基活化断裂糖苷键的方法,利用羟基自由基的高活性在低温下实现糖苷键的选择性断裂,同时羟基自由基与糖苷键作用后转化为无毒无害的水和氧气,将不会对环境造成污染.我们首先以纤维二糖作为纤维素的模型分子,通过羟基自由基能够优先与糖苷键反应得到葡萄糖和葡萄糖酸的实验证实所提出的方法的可行性.实验表明,来自H_2O_2的·OH自由基能够在铜基催化剂作用下选择性氧化断裂其糖苷键,生成葡萄糖和葡萄糖酸.比如:采用均相Cu SO_4体系,纤维二糖转化率约为20%时,葡萄糖和葡萄糖酸的选择性分别为28.5%和32.3%.采用多相CuO/SiO_2(4 wt%CuO)体系,纤维二糖转化率约为20%时,葡萄糖和葡萄糖酸的选择性约分别为23.3%和25.7%,并且该催化剂具有良好的循环使用性能.与·OH类似,CuSO_4催化过硫酸钾生成的·SO_4~?自由基也能够有效转化纤维二糖,在纤维二糖转化率为20%时,葡萄糖和葡萄糖酸的选择性分别为36.6%和39.9%.利用这种·OH和·SO_4~?自由基氧化的方法,也能够在较低温度下(333 K)解聚纤维素中的糖苷键.我们发展了H_2O_2浸渍预处理纤维浸渍预处理纤维素的方法,通过部分破坏纤维素糖苷键,提高了纤维素的水解活性.比如:处理后的纤维素在413 K条件下反应12 h,纤维素转化率和葡萄糖选择性分别达到约36.1%和42.5%.XRD结果表明,处理后的纤维素的晶体结构未发生明显的变化.FT-IR表征结果显示处理后的纤维素表面生成了大量的羧酸基团.  相似文献   

3.
木质纤维素化学水解产生可发酵糖研究   总被引:3,自引:0,他引:3  
何北海  林鹿  孙润仓  孙勇 《化学进展》2007,19(7):1141-1146
能源短缺已成为国际上亟待解决的问题,利用生物质纤维素生产能源乙醇是目前研究的热点.生物质纤维素转化能源乙醇技术的关键与瓶颈之一是如何将纤维素水解为可发酵单糖,水解技术尚处于不断发展之中.本文主要综述了生物质纤维素化学水解的研究进展.  相似文献   

4.
能源短缺已成为国际上亟待解决的问题,利用生物质纤维素生产能源乙醇是目前研究的热点.生物质纤维素转化能源乙醇技术的关键与瓶颈之一是如何将纤维素水解为可发酵单糖,水解技术尚处于不断发展之中.本文主要综述了生物质纤维素化学水解的研究进展.  相似文献   

5.
高效转化来源丰富且可再生的木质纤维素制备化学品和燃料对建立可持续发展社会具有重要意义.木质纤维素利用的一条理想途径是将其主要成分纤维素、半纤维素和木质素在温和条件下高选择性地催化转化为关键平台化学品.本文综述了近年报道的有关纤维素、半纤维素和木质素或其模型分子中C–O键选择性活化生成葡萄糖、葡萄糖衍生物(包括葡萄糖苷、六元醇和葡萄糖酸)、木糖、阿拉伯糖和芳香化合物的新催化剂和新策略,阐述了决定催化性能的关键因素.本文还讨论了相关反应机理以深入理解C–O键选择性活化.纤维素由葡萄糖单元通过β-1,4-糖苷键连接而成,通过水解反应,选择性切断这些糖苷键可以获得葡萄糖或其低聚物.鉴于葡萄糖在水热条件下不稳定,发展纤维素温和条件下水解的酸催化剂至关重要.众多研究表明,均相酸催化剂(如无机酸,杂多酸等)具有强Br?nsted酸,在该水解反应中显示高的催化活性.另一方面,拥有强酸性基团-SO3H的固体酸也表现出优异的水解糖苷键性能,但是-SO3H官能团易于流失,限制了这类固体酸催化剂的循环使用.最近研究显示,一些催化剂尤其是碳材料上引入能够与纤维素形成氢键的官能团时,其催化纤维素水解性能显著增强.设计合成这类具备酸性位和氢键位协同效应的稳定固体酸催化剂是纤维素水解转化的一个颇具前景的研究方向.以醇替代水为溶剂实施纤维素醇解制葡萄糖苷是高效活化糖苷键的有效策略.杂多酸被证实为该醇解反应的高性能催化剂.在相同反应条件下,醇解产物葡萄糖苷较水解产物葡萄糖更为稳定,因此可以获得高的葡萄糖苷收率.开发稳定可重复利用的固体酸催化剂是纤维素醇解的关键.耦合水解与加氢或氧化反应可以直接将纤维素转化为相对稳定且具有广泛用途的多元醇或有机酸.目前已有一系列双功能催化剂被报道,这些催化剂通常组合了具备水解功能的液体酸或固体酸和具备加氢或氧化功能的贵金属或过渡金属(譬如Ru,Pt,Ni和Au).其中杂多酸盐或含有磺酸官能团的固体酸负载Ru或Au双功能催化剂显示出优异的生成六元醇或葡萄糖酸的催化性能.半纤维素由葡萄糖、甘露糖、木糖、阿拉伯糖、半乳糖等单糖单元通过糖苷键连接而成,糖苷键选择性活化可生成各种单糖混合物.硫酸可以有效水解半纤维素,但是同时也易于催化所生成的单糖深度转化为呋喃及其衍生物.较之硫酸,酸性较弱的有机酸特别是二元羧酸(例如马来酸、草酸等)具有较高的单糖选择性.固体酸如酸性树脂,分子筛等亦可催化半纤维素水解反应,但树脂类催化剂中官能团的流失问题有待解决.木质素是由含甲氧基等取代基的苯丙烷单元通过一系列化学键连接而成的复杂大分子,其芳香单元间包括β-O-4,α-O-4和4-O-5等三种主要连接方式,选择性切断这些C–O键可获得高附加值的芳香化合物.水解和氢解是两类普遍用以活化木质素及其模型化合物C–O键的反应.酸和碱均可催化木质素及其模型化合物水解,但是通常需要苛刻条件获取高转化率.近期研究显示,通过对木质素Cα-OH预氧化,再以HCOOH/HCOONa实施水解反应,可以成功实现温和条件下有机溶剂提取木质素及其模型化合物的高效转化.另一方面,均相金属络合物(如Ni,Fe和Ru)或多相负载型金属催化剂(如Ni,Cu,Mo,Pt,Ru,Pd或Ru等)均可有效催化木质素及其模型化合物中C–O键氢解,获得芳烃化合物.在部分多相催化剂体系中,除C–O键活化断裂外,还伴随芳环深度加氢反应,产生较多环己烷衍生物.因此,设计合成具备氢解功能同时抑制过度加氢功能的催化剂是获得芳烃化合物的关键.  相似文献   

6.
近年来纤维素的有效降解和转化问题已成为制约木质纤维素生物质有效利用的主要瓶颈之一。纤维素降解和转化方法的研究已成为当今科技界的一大研究热点,它对解决当前的资源、能源和环境问题都具有重要意义。将纤维素水解为葡萄糖等糖类物质是纤维素利用的重要途径。本文详细综述了目前有关纤维素水解的各种方法和相关研究进展。  相似文献   

7.
纤维素在离子液体中的降解转化   总被引:1,自引:0,他引:1  
周理龙  吴廷华  吴瑛 《化学进展》2012,24(8):1533-1543
随着社会对能源资源的需求越来越大,生物质资源得到了广泛的重视,世界上存储量最大的生物质资源--纤维素在新兴溶剂离子液体中的降解转化受到了越来越多的关注。本文简要介绍了近几年来纤维素在离子液体中的溶解、单糖(果糖、葡萄糖)在离子液体中脱水转化为5-HMF(5-羟甲基糠醛)和纤维素在离子液体中一步降解转化为5-HMF的研究。指出目前研究存在的缺点与不足,并提出了可能的解决方法。  相似文献   

8.
能源短缺已成为国际上亟待解决的问题,利用生物质纤维素生产能源乙醇是目前研究的热点。生物质纤维素转化能源乙醇技术的关键与瓶颈之一是如何将纤维素水解为可发酵单糖,水解技术尚处于不断发展之中。本文主要综述了生物质纤维素化学水解的研究进展。  相似文献   

9.
纤维素是生物质的主要成分,其水解产物作为平台化合物在能源化工方面具有广泛的用途.绿色、低成本、高效的转化纤维素为平台化合物是目前研究的热点.本文报道了以生物质玉米秸秆、花生壳、核桃壳为原料经700℃碳化150℃磺化后得到生物质炭磺酸,将得到的生物质炭磺酸进行离子液体的负载得到离子液体功能化的生物质炭磺酸催化剂,探讨了时间和温度对制备的催化剂水解纤维素后总还原糖产率的影响,与负载前的生物质炭磺酸进行了对比.结果表明,150℃反应28 h三种催化剂均得到良好的总还原糖产率,相对于生物质炭磺酸总还原糖产率分别提升了13. 9%、16. 4%和14. 7%.循环使用四次后,催化剂依然保持着良好的催化活性.  相似文献   

10.
高效转化来源丰富且可再生的木质纤维素制备化学品和燃料对建立可持续发展社会具有重要意义。木质纤维素利用的一条理想途径是将其主要成分纤维素、半纤维素和木质素在温和条件下高选择性地催化转化为关键平台化学品。本文综述了近年报道的有关纤维素、半纤维素和木质素或其模型分子中C–O键选择性活化生成葡萄糖、葡萄糖衍生物(包括葡萄糖苷、六元醇和葡萄糖酸)、木糖、阿拉伯糖和芳香化合物的新催化剂和新策略,阐述了决定催化性能的关键因素。本文还讨论了相关反应机理以深入理解C–O键选择性活化。纤维素由葡萄糖单元通过β-1,4-糖苷键连接而成,通过水解反应,选择性切断这些糖苷键可以获得葡萄糖或其低聚物。鉴于葡萄糖在水热条件下不稳定,发展纤维素温和条件下水解的酸催化剂至关重要。众多研究表明,均相酸催化剂(如无机酸,杂多酸等)具有强Br?nsted酸,在该水解反应中显示高的催化活性。另一方面,拥有强酸性基团-SO3H的固体酸也表现出优异的水解糖苷键性能,但是-SO3H官能团易于流失,限制了这类固体酸催化剂的循环使用。最近研究显示,一些催化剂尤其是碳材料上引入能够与纤维素形成氢键的官能团时,其催化纤维素水解性能显著增强。设计合成这类具备酸性位和氢键位协同效应的稳定固体酸催化剂是纤维素水解转化的一个颇具前景的研究方向。以醇替代水为溶剂实施纤维素醇解制葡萄糖苷是高效活化糖苷键的有效策略。杂多酸被证实为该醇解反应的高性能催化剂。在相同反应条件下,醇解产物葡萄糖苷较水解产物葡萄糖更为稳定,因此可以获得高的葡萄糖苷收率。开发稳定可重复利用的固体酸催化剂是纤维素醇解的关键。耦合水解与加氢或氧化反应可以直接将纤维素转化为相对稳定且具有广泛用途的多元醇或有机酸。目前已有一系列双功能催化剂被报道,这些催化剂通常组合了具备水解功能的液体酸或固体酸和具备加氢或氧化功能的贵金属或过渡金属(譬如Ru, Pt, Ni和Au)。其中杂多酸盐或含有磺酸官能团的固体酸负载Ru或Au双功能催化剂显示出优异的生成六元醇或葡萄糖酸的催化性能。半纤维素由葡萄糖、甘露糖、木糖、阿拉伯糖、半乳糖等单糖单元通过糖苷键连接而成,糖苷键选择性活化可生成各种单糖混合物。硫酸可以有效水解半纤维素,但是同时也易于催化所生成的单糖深度转化为呋喃及其衍生物。较之硫酸,酸性较弱的有机酸特别是二元羧酸(例如马来酸、草酸等)具有较高的单糖选择性。固体酸如酸性树脂,分子筛等亦可催化半纤维素水解反应,但树脂类催化剂中官能团的流失问题有待解决。木质素是由含甲氧基等取代基的苯丙烷单元通过一系列化学键连接而成的复杂大分子,其芳香单元间包括β-O-4,α-O-4和4-O-5等三种主要连接方式,选择性切断这些C–O键可获得高附加值的芳香化合物。水解和氢解是两类普遍用以活化木质素及其模型化合物C–O键的反应。酸和碱均可催化木质素及其模型化合物水解,但是通常需要苛刻条件获取高转化率。近期研究显示,通过对木质素Cα-OH预氧化,再以HCOOH/HCOONa实施水解反应,可以成功实现温和条件下有机溶剂提取木质素及其模型化合物的高效转化。另一方面,均相金属络合物(如Ni, Fe和Ru)或多相负载型金属催化剂(如Ni, Cu, Mo, Pt, Ru, Pd或Ru等)均可有效催化木质素及其模型化合物中C–O键氢解,获得芳烃化合物。在部分多相催化剂体系中,除C–O键活化断裂外,还伴随芳环深度加氢反应,产生较多环己烷衍生物。因此,设计合成具备氢解功能同时抑制过度加氢功能的催化剂是获得芳烃化合物的关键。  相似文献   

11.
5-羟甲基糠醛(HMF)作为一种重要且多用途的生物质基平台化合物,可被转化为多种高附加值化学品,如乙酰丙酸、2,5-二甲基呋喃、2,5-呋喃二甲酸、2,5-呋喃二甲醇、γ-戊内酯、5-氨基乙酰丙酸等,而这些化学品可进一步作为化石燃料替代品、燃料添加剂或作为聚合物单体或医药产品等进行应用。葡萄糖是由纤维素水解大量得到的六碳单糖,由葡萄糖制备HMF是生物质资源最大化利用的有效途径之一。本文通过对近几年HMF制备方法的概述,分别由催化剂、反应体系两方面进行分类总结葡萄糖基碳水化合物制备HMF的研究进展,并对其各个反应过程的催化活性、反应体系稳定性和应用前景进行了总结归纳。随后论述了用于HMF制备的多种溶剂体系(诸如单相体系、双相体系、离子液体和低共熔溶剂体系)。最后,结合目前葡萄糖制备HMF过程中存在的问题,对未来工作的研究重点进行了展望,以期为相关研究者提供参考。  相似文献   

12.
为解决现有的以生物质为起始原料制备5-羟甲基呋喃甲醛(5-HMF)工业化所存在的问题,本研究开发了一种新颖的5-HMF的制备方法。该制备方法以最重要的生物质——纤维素的酸水解得到的无水D-葡萄糖单体为起始原料,经甲苷化、异丙叉化、环硫酸酯化和高温脱水反应,最终获得5-HMF。该方法中,各步所获得的中间体无需纯化即可用于后续制备过程,制备中所涉及到的各类型试剂廉价易获取,因此该方法具有较好的工业应用前景。  相似文献   

13.
纤维素超临界水预处理与水解研究   总被引:3,自引:0,他引:3  
利用超临界水解工艺进行生物质废弃物(秸秆)能源转化, 使其主要成分纤维素在超临界水中快速水解为低聚糖, 为其进一步葡萄糖转化和乙醇发酵解决技术瓶颈. 其中纤维素在超临界水中的溶解是预处理与水解过程的限速步骤. 研究表明, 反应温度达到380 ℃及以上时, 纤维素可迅速溶解并进行水解, 液化比例可达100%; 在374~386 ℃范围内反应温度对纤维素的转化率有明显作用, 低聚糖和六碳糖的总产率在临界点附近出现最大值. 超临界条件下, 低聚糖和六碳糖转化率在较短反应时间内出现峰值, 而后随反应时间的延长快速下降, 固液比对于纤维素的低聚糖和六碳糖转化也有显著影响. 最优水解条件研究显示, 在380 ℃, 40 mg纤维素/2.5 mL水条件下反应16 s可获得最大的低聚糖产率, 为29.3%, 在380 ℃, 80 mg纤维素/2.5 mL水条件下反应18 s可获得最大的六碳糖产率, 为39.2%.  相似文献   

14.
β-环糊精是由7个D-吡喃葡萄糖单元通过α-1,4糖苷键连接成的锥形结构低聚糖,其外部边缘是亲水性的羟基,内部为疏水空腔[1],可广泛应用于药物包结[2]、色谱分离[3]、分子催化[4]等方面.然而,由于β-环糊精的C2-C3羟基之间形成分子内氢键,导致其在水中的溶解度不高,使其应用受到一定的限制[5].为了克服β-环糊精溶解度小的缺点,国内外对其进行改性研究,使其具有更优良的性质,提高其应用效果.  相似文献   

15.
尹钰  马春慧  李伟  刘守新 《化学进展》2021,33(10):1856-1873
五羟甲基糠醛(5-HMF)被认为是近年来最具发展性和潜力的新型平台化合物。纤维素水解经由葡萄糖中间步骤进而转化为5-HMF是生物质资源制备能源平台化合物的主要利用途径之一,理解葡萄糖转化为5-HMF的过程具有重要意义。本文介绍了由葡萄糖制备5-HMF过程中的不同溶剂体系及外场对目标产物得率的影响,综述了由葡萄糖向5-HMF的转化机理,包括葡萄糖异构为果糖、果糖脱水生成5-HMF。目前,葡萄糖制备5-HMF的溶剂体系包括单相体系、离子液体、双相体系和低共熔溶剂体系,其中由离子液体和有机溶剂构成的双相反应体系是葡萄糖转化制5-HMF最有优势的反应体系,可以使生成的5-HMF迅速从反应相转移到有机相,减少副反应从而提高5-HMF得率;超声振荡、微波辐射和外加压力场通过与反应溶剂的协同作用加速传质、传热,大大缩短反应时间,提高反应效率。目前关于提高5-HMF得率以及中间产物的稳定和控制有待进一步深入研究。  相似文献   

16.
多元醇: 新一代的能源平台?   总被引:1,自引:0,他引:1  
颜宁  赵晨  甘维佳  寇元 《催化学报》2006,27(12):1159-1163
 在基于生物质的新能源战略中,多元醇正在成为新一代的能源平台. 从纤维素出发,通过热裂解、催化裂化和酸水解加氢等反应能制得多元醇,再以多元醇为原料在较温和的条件下通过水汽重整和费托合成等方法合成燃料、化学品和氢气. 本文综述了多元醇经水汽重整制燃料油和化学品或经光解制氢气的进展,介绍了纤维素类生物质资源经催化氢化和水解加氢制多元醇的研究进展. 虽然简单地套用现有的工业技术就可以转化纤维素,但这些方法在效率、能耗、规模和环保等方面还存在诸多问题,有效提高纤维素利用率的新思路仍在期待之中. 虽然采用精心设计的工艺路线可以有效地转化多元醇,但离“简约、节能、方便可行和环境友好”的要求仍有一定的差距,“一步法”或“一锅法”在未来可能是催化学家仍需持续努力的方向.  相似文献   

17.
本文基于酶催化的纤维素降解机理,提出了酸性咪唑离子液体催化纤维素糖苷键水解的理论模型,计算了[C_4SO_3Hmim]HSO_4、[C_4SO_3Hmim]H_2PO_4、[C_4SO_3Hmim]Cl、[C_4SO_3-Hmim]Br和[C_4COOHmim]Cl 5种咪唑离子液体催化糖苷键水解的分子机理和反应的热力学、动力学性质,分析了不同酸性基团和阴离子种类对反应的影响.研究结果为筛选有效降解纤维素的功能性离子液体提供了一定的理论指导.  相似文献   

18.
乔颖  腾娜  翟承凯  那海宁  朱锦 《化学进展》2018,30(9):1415-1423
利用化学法实施纤维素高效水解成糖是将可再生非粮生物质转化为能源与材料的关键支撑技术,对维系未来资源与环境的可持续发展具有重要意义。近年来,随着纤维素水解研究的不断深入,研究重点已从探索水解可行性发展到构建高效(即高转化率、高选择性、高转化速度)水解成糖技术。本文通过系统综述纤维素高效水解成糖的原理与方法,围绕纤维素结晶结构转变与水解成糖效率间的关系,详细探讨了各类技术方法在实施高效水解成糖方面的优势与不足。最后,结合最新的研究进展,为未来成功实现纤维素的高效水解成糖提供思路与建议。  相似文献   

19.
β-CD与乙酸苄酯包合物的制备及其热分解研究   总被引:4,自引:0,他引:4  
界环糊精(β-Cyclodextrin,β-CD)是由7个葡萄糖基以1,4-糖苷键连成的中空简状化合物,它内部疏水,而两端亲水,这种特殊的结构特点使得它可以作为宿主包合各种客体分子[1、2],由于这种包合作用能改变客体分子的状态、稳定性等理化特性,加之β-CD无毒[3],因此β-CD与  相似文献   

20.
纤维素水解是生物质资源转化利用中最关键的一步. 通过硫酸浸渍活性炭方法制备的磺酸基功能化活性炭是目前纤维素水解反应中应用最为广泛的固体酸之一,但这种方法存在严重的环境污染问题. 我们利用果糖的水热碳化,在150 ℃的温和条件下合成了一种新型的富含羧基和羟基的碳微球固体酸,在离子液体1-丁基-3-甲基咪唑氯盐[BMIM][Cl]溶剂体系中,该碳微球可以有效地将纤维素水解(130 ℃,反应3 h,还原糖产率45.6%). 为了进一步提高碳微球固体酸的活性,以磺基水杨酸为共聚物,利用果糖的水热碳化反应,通过一步水热法合成了含有磺酸基的碳微球固体酸催化剂. 系统研究了该催化剂作用下反应温度、反应时间、催化剂使用量、水的添加量以及纤维素起始浓度等因素对纤维素催化水解的影响. 在[BMIM][Cl]溶剂中,纤维素水解的还原糖产率提高到了60.7% (130 ℃,反应90 min),且催化剂循环5次后仍能保持良好催化活性. 本工作利用果糖一步水热法制备碳微球固体酸,并将其应用于纤维素的高效水解,为生物质资源的高值化提供了一条新路径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号