首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Double‐wall carbon nanotubes (DWCNTs) with pyridyl units covalently attached to the external wall through isoxazolino linkers and carboxylic groups that have been esterified by pentyl chains are synthesized. The properties of these modified DWCNTs are then compared with an analogous sample based on single‐wall carbon nanotubes (SWCNTs). Raman spectroscopy shows the presence of characteristic radial breathing mode vibrations, confirming that the samples partly retain the integrity of the nanotubes in the case of DWCNTs, including the internal and external nanotubes. Quantification of the pyridyl content for both samples (DWCNT and SWCNT derivatives) is based on X‐ray photoelectron spectroscopy and thermogravimetric profiles, showing very similar substituent load. Both pyridyl‐containing nanotubes (DWCNTs and SWCNTs) form a complex with zinc porphyrin (ZnP), as evidenced by the presence of two isosbestic points in the absorption spectra of the porphyrin upon addition of the pyridyl‐functionalized nanotubes. Supramolecular complexes based on pyridyl‐substituted DWCNTs and SWCNTs quench the emission and the triplet excited state identically, through an energy‐transfer mechanism based on pre‐assembly of the ground state. Thus, the presence of the intact inner wall in DWCNTs does not influence the quenching behavior, with respect to SWCNTs, for energy‐transfer quenching with excited ZnP. These results sharply contrast with previous ones referring to electron‐transfer quenching, in which the double‐wall morphology of the nanotubes has been shown to considerably reduce the lifetime of charge separation, owing to faster electron mobility in DWCNTs compared to SWCNTs.  相似文献   

2.
《Electrophoresis》2017,38(13-14):1669-1677
We demonstrate the separation of chirality‐enriched single‐walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high‐performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality‐enriched SWCNTs through covalent functionalization using 4‐carboxybenzenediazonium tetrafluoroborate or 4‐diazo‐N,N‐diethylaniline tetrafluoroborate, respectively. Surfactant‐ and pH‐dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single‐chirality‐enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single‐chirality SWCNTs by functional density was confirmed with UV‐Vis‐NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality‐enriched samples, and show the feasibility of applying CE for high‐performance separation of nanomaterials based on differences in surface functional density.  相似文献   

3.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

4.
Nucleobase‐directed spin‐labeling by the azide‐alkyne ‘click’ (CuAAC) reaction has been performed for the first time with oligonucleotides. 7‐Deaza‐7‐ethynyl‐2′‐deoxyadenosine ( 1 ) and 5‐ethynyl‐2′‐deoxyuridine ( 2 ) were chosen to incorporate terminal triple bonds into DNA. Oligonucleotides containing 1 or 2 were synthesized on a solid phase and spin labeling with 4‐azido‐2,2,6,6‐tetramethylpiperidine 1‐oxyl (4‐azido‐TEMPO, 3 ) was performed by post‐modification in solution. Two spin labels ( 3 ) were incorporated with high efficiency into the DNA duplex at spatially separated positions or into a ‘dA‐dT’ base pair. Modification at the 5‐position of the pyrimidine base or at the 7‐position of the 7‐deazapurine residue gave steric freedom to the spin label in the major groove of duplex DNA. By applying cw and pulse EPR spectroscopy, very accurate distances between spin labels, within the range of 1–2 nm, were measured. The spin–spin distance was 1.8±0.2 nm for DNA duplex 17 ( dA*7,10 ) ?11 containing two spin labels that are separated by two nucleotides within one individual strand. A distance of 1.4±0.2 nm was found for the spin‐labeled ‘dA‐dT’ base pair 15 ( dA*7 ) ?16 ( dT*6 ). The ‘click’ approach has the potential to be applied to all four constituents of DNA, which indicates the universal applicability of the method. New insights into the structural changes of canonical or modified DNA are expected to provide additional information on novel DNA structures, protein interaction, DNA architecture, and synthetic biology.  相似文献   

5.
A new and facile method for the preparation of single‐walled carbon nanotubes (SWCNTs) decorated with Cu nanoparticles (CuNPs) formed on a double‐stranded DNA template in aqueous solution has been developed. A specially designed synthetic DNA sequence, containing a single‐stranded domain for the dispersion of carbon nanotubes and double‐stranded domains for the selective growth of CuNPs, was utilized. The final SWCNT/CuNP hybrids were characterized using fluorescence spectroscopy and transmission electron microscopy. The analyses clearly demonstrated the selective formation of uniform CuNPs on the carbon nanotube scaffold.  相似文献   

6.
DNA separation by fragment length can be readily achieved using sieving gels in electrophoresis. Separation by sequence has not been as simple, generally requiring adequate differences in native or induced conformation between single or hybridized strands or differences in thermal or chemical stability of hybridized strands. Previously, it was shown that four single‐stranded DNA (ssDNA) 76‐mers that differ by only a few A‐G substitutions could be separated based solely on sequence by adding guanosine‐5’‐monophosphate to the running buffer in capillary zone electrophoresis (CZE). The separation was attributed to interactions of the ssDNA with self‐assembled guanine‐tetrad structures; however, subsequent studies of an expanded set of ten 76‐mers showed that the separation was a more general phenomenon that occurred at high salt concentrations. With the long‐term goal of using experimental and computational methods to provide insight into the basis of the separation, a set of ssDNA 15‐mers was designed including a poly(dT) 15‐mer and nine variants. Separations were performed using fluorescent‐labeled ssDNA in CZE with laser‐induced fluorescence detection. Results show that separation improves with increasing buffer concentration and decreasing temperature, due at least in part to longer separation times. Migration times increase with increasing purine content, with A having a much larger effect that G. Circular dichroism spectra of the mixtures of the strands suggest that the separation is not due to changes in conformation of the ssDNA at high salt concentrations.  相似文献   

7.
Novel silver‐mediated dA?dC, dA*?dC, and dA*?dG base pairs were formed in a natural DNA double helix environment (dA* denotes 7‐deaza‐dA, 7‐deaza‐7‐iodo‐dA, and 7‐cyclopropyl‐7‐deaza‐dA). 7‐Deazapurine nucleosides enforce silver ion binding and direct metal‐mediated base pair formation to their Watson–Crick face. New phosphoramidites were prepared from 7‐deaza‐dA, 7‐deaza‐7‐iodo‐dA, and 7‐cyclopropyl‐7‐deaza‐dA, which contain labile isobutyryl protecting groups. Solid‐phase synthesis furnished oligonucleotides that contain mismatches in near central positions. Increased thermal stabilities (higher Tm values) were observed for oligonucleotide duplexes with non‐canonical dA*?dC and dA?dC pairs in the presence of silver ions. The stability of the silver‐mediated base pairs was pH dependent. Silver ion binding was not observed for the dA?dG mismatch but took place when mismatches were formed between 7‐deazaadenine and guanine. The specific binding of silver ions was confirmed by stoichiometric UV titration experiments, which proved that one silver ion is captured by one mismatch. The stability increase of canonical DNA mismatches might have an impact on cellular DNA repair.  相似文献   

8.
Polyethylene (PE) chains grafted onto the sidewalls of SWCNTs (SWCNT‐g‐PE) were successfully synthesized via ethylene copolymerization with functionalized single‐walled carbon nanotubes (f‐SWCNTs) catalyzed by rac‐(en)(THInd)2ZrCl2/MAO. Here f‐SWCNTs, in which α‐alkene groups were chemically linked on the sidewalls of SWCNTs, were synthesized by Prato reaction. The composition and microstructure of SWCNT‐g‐PE were characterized by means of 1H NMR, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analyses (TGA), field‐emission scanning electron microscope (FESEM), and transmission electron microscope (TEM). Nanosized cable‐like structure was formed in the SWCNT‐g‐PE, in which the PE formed a tubular shell and several SWCNTs bundles existed as core. The formation of the above morphology in the SWCNT‐g‐PE resulted from successfully grafting of PE chains onto the surface of SWCNTs via copolymerization. The grown PE chains grafted onto the sidewall of the f‐SWCNTs promoted the exfoliation of the mass nanotubes. Comparing with pure PE, the physical mixture of PE/f‐SWCNTs and in situ PE/SWCNTs mixture, thermal stability, and mechanical properties of SWCNT‐g‐PE were higher because of the chemical bonding between the f‐SWCNTs and PE chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5459–5469, 2007  相似文献   

9.
We report the synthesis of two new amphiphilic conjugates 1 and 2 based on naphthalene di‐ and monoimide chromophores and the investigation of their photophysical, self‐assembly and DNA‐binding properties. These conjugates showed aqueous good solubility and exhibited strong interactions with DNA and polynucleotides such as poly(dG?dC)–poly(dG?dC) and poly(dA?dT)–poly(dA?dT). The interaction of these conjugates with DNA was evaluated by photo‐ and biophysical techniques. These studies revealed that the conjugates interact with DNA through intercalation with association constants in the order of 5–8×104 M ?1. Of these two conjugates, bolaamphiphile 1 exhibited a supramolecular assembly that formed vesicles with an approximate diameter of 220 nm in the aqueous medium at a critical aggregation concentration of 0.4 mM , which was confirmed by SEM and TEM. These vesicular structures showed a strong affinity for hydrophobic molecules such as Nile red through encapsulation. Uniquely, when exposed to DNA the vesicles disassembled, and therefore this transformation could be utilised for the encapsulation and release of hydrophobic molecules by employing DNA as a stimulus.  相似文献   

10.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate)s (PBLGs) having well‐defined polymer molecular weight (Mn = 7.5–21.1 kg·mol?1) and molecular weight distribution (PDI = 1.05–1.20) by a graft‐to method. Toluene solutions containing 5 wt % free PBLG and variable amounts of PBLG‐functionalized SWCNTs (PBLG‐SWCNTs) form gels at room temperature. Differential scanning calorimetry (DSC) analysis reveals that the gelation occurs thermoreversibly, in accord with previous studies on the pristine PBLG/toluene gels. The heat of gel melting (ΔHm) is slightly elevated for the composite gels compared with the pristine gel, which suggests enhanced interactions between PBLGs in the former. But the gelation temperatures of the composites are unaffected by the presence of PBLG‐SWCNTs. Small‐angle X‐ray scattering (SAXS) analysis of the composite and pristine gels at different temperatures by the Guinier method suggests that PBLG‐SWCNTs promote interactions between PBLG rods, as indicated by the larger PBLG bundle size with increasing PBLG‐SWCNT content in the gel and the melt state. W/SAXS analysis of the dry gels reveals that PBLG‐SWCNTs induce significant changes in the PBLG packing order, resulting in a nematic phase, in contrast to a weakly ordered smectic C phase containing tilted PBLG rods that is observed in the pristine gel. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A coumarin‐modified pyrimidine nucleoside ( 1 ) has been synthesized using a CuI‐catalyzed click reaction and incorporated into oligodeoxynucleotides (ODNs). Interstrand cross‐links are produced upon irradiation of ODNs containing 1 at 350 nm. Cross‐linking occurs through a [2+2] cycloaddition reaction with the opposing thymidine, 2′‐deoxycytidine, or 2′‐deoxyadenosine. A much higher reactivity was observed with dT than dC or dA. Irradiation of the dT‐ 1 and dC‐ 1 cross‐linked products at 254 nm leads to a reversible ring‐opening reaction, while such phenomena were not observed with dA‐ 1 adducts. The reversible reaction is ultrafast and complete within 50–90 s. Consistent photoswitching behavior was observed over 6 cycles of irradiation at 350 nm and 254 nm. To the best of our knowledge, this is the first example of photoswitchable interstrand cross‐linking formation induced by a modified pyrimidine nucleoside.  相似文献   

12.
An electrochemical drug‐DNA biosensor was developed for the detection of interaction between the anti‐cancer drug, Temozolomide (TMZ), and DNA sequences by using Differential Pulse Voltammetry at the graphite electrode surfaces. TMZ is a pro‐drug and an alkylating agent that crosses the blood‐brain barrier, so it is mainly used for brain cancers treatment. In this study, we aim to develop a‐proof‐of‐concept study to investigate the effect of TMZ on formerly methylated DNA sequences since TMZ shows its anti‐cancer activity by methylating the DNA. Interaction between TMZ and DNA causes localized distortion of DNA away from an idealized B‐form, resulting in a wider major groove and greater steric accessibility of functional groups in the base of the groove. According to the results, TMZ behaves as a ‘hybridization indicator’ because of its different electrochemical behavior to different strands of DNA. After interaction with TMZ, hybrid (double stranded DNA‐dsDNA) signals decreased dramatically whereas probe (single stranded DNA‐ssDNA) and control signals remain almost unchanged. The signal differences enabled us to distinguish ssDNA and dsDNA without using a label or tag. It is the first study to demonstrate the interaction between the TMZ and dsDNA created from probe and target. We use specific oligonucleotides sequences instead of using long dsDNA sequences.  相似文献   

13.
This work demonstrates the successful incorporation of functionalized single‐walled carbon nanotubes (f‐SWCNTs) into the phenylboronate‐diol crosslinked polymer gel to create a hybrid system with reversible sol–gel transition. The phenylboronic acid‐containing and diol‐containing polymers were first separately prepared by the reversible addition–fragmentation chain transfer polymerization. Covalent functionalization of single‐walled carbon nanotubes (SWCNTs) with an azide‐derivatized, diol‐containing polymer was then accomplished by a nitrene addition reaction. Subsequently, the hybrid gels were prepared by crosslinking the mixture of f‐SWCNTs and diol‐containing polymer with the phenylboronic acid‐containing polymer. The hybrid gel has been characterized by scanning electron microscopy (SEM) and rheological analysis. The SEM measurement demonstrated a homogeneous dispersion of f‐SWCNTs within the gel matrices. Rheological experiments also demonstrated that the hybrid gel exhibited storage moduli significantly higher than those of the native gel obtained from the phenylboronic acid‐containing and diol‐containing polymers. The hybrid gel can be switched into their starting polymer (f‐SWCNTs) solutions by adjusting the pH of the system. Moreover, the hybrid gel revealed a self‐healing property that occurred autonomously without any outside intervention. By employing this dynamic character, it is possible to regenerate the used gel, and thus, it has the potential to perform in a range of dynamic or bioresponsive applications Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Nanostructures derived from amphiphilic DNA–polymer conjugates have emerged prominently due to their rich self‐assembly behavior; however, their synthesis is traditionally challenging. Here, we report a novel platform technology towards DNA–polymer nanostructures of various shapes by leveraging polymerization‐induced self‐assembly (PISA) for polymerization from single‐stranded DNA (ssDNA). A “grafting from” protocol for thermal RAFT polymerization from ssDNA under ambient conditions was developed and utilized for the synthesis of functional DNA–polymer conjugates and DNA–diblock conjugates derived from acrylates and acrylamides. Using this method, PISA was applied to manufacture isotropic and anisotropic DNA–polymer nanostructures by varying the chain length of the polymer block. The resulting nanostructures were further functionalized by hybridization with a dye‐labelled complementary ssDNA, thus establishing PISA as a powerful route towards intrinsically functional DNA–polymer nanostructures.  相似文献   

15.
Circular single‐stranded DNA (c‐ssDNA) has significant applications in DNA detection, the development of nucleic acid medicine, and DNA nanotechnology because it shows highly unique features in mobility, dynamics, and topology. However, in most cases, the efficiency of c‐ssDNA preparation is very low because polymeric byproducts are easily formed due to intermolecular reaction. Herein, we report a one‐pot ligation method to efficiently prepare large c‐ssDNA. By ligating several short fragments of linear single‐stranded DNA (l‐ssDNA) in one‐pot by using T4 DNA ligase, longer l‐ssDNAs intermediates are formed and then rapidly consumed by the cyclization. Since the intramolecular cyclization reaction is much faster than intermolecular polymerization, the formation of polymeric products is suppressed and the dominance of intramolecular cyclization is promoted. With this simple approach, large‐sized single‐stranded c‐ssDNAs (e.g., 200‐nt) were successfully synthesized in high selectivity and yield.  相似文献   

16.
A disaccharide, Glcβ(1→3)GlcNAcβ1→STol (GGS, 1 ), was synthesized and demonstrated to stabilize ct‐DNA during the denaturing process. GGS at 50 μM shifted Tm of ct‐DNA by 23 °C and the behavior was pH dependent. Poly(dA‐dT)2 was found to be the preferable type of DNA for GGS stabilization by circular dichroism spectroscopy study.  相似文献   

17.
We have taken (dA)5, (dT)5, and (dA)5·(dT)5 as model systems to study concerted effects of base pairing and stacking on excited‐state nature of DNA oligonucleotides using density functional theory (DFT) and time dependent DFT methods. The spectroscopic states are determined to be of a partial A → A charge‐transfer nature in the A·T oligonucleotides. The T → T charge‐transfer transitions produce dark states, which are hidden in the energy region of the steady‐state absorption spectra. This is different from the previous assignment that the T → T charge‐transfer transition is responsible for a shoulder at the red side of the first strong absorption band. The A → T charge‐transfer states were predicted to have relatively high energies in the A·T oligonucleotides. The present calculations predict that the T → A charge‐transfer states are not involved in the spectra and excited‐state dynamics of the A·T oligonucleotides. In addition, the influence of base pairing and stacking on the nature of the 1nπ* and 1ππ* states are discussed in detail. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
Unlabelled single‐ and double‐stranded DNA (ssDNA and dsDNA, respectively) has been detected at concentrations ≥10?9 M by surface‐enhanced Raman spectroscopy. Under appropriate conditions the sequences spontaneously adsorbed to the surface of both Ag and Au colloids through their nucleobases; this allowed highly reproducible spectra with good signal‐to‐noise ratios to be recorded on completely unmodified samples. This eliminated the need to promote absorption by introducing external linkers, such as thiols. The spectra of model ssDNA sequences contained bands of all the bases present and showed systematic changes when the overall base composition was altered. Initial tests also showed that small but reproducible changes could be detected between oligonucleotides with the same bases arranged in a different order. The spectra of five ssDNA sequences that correspond to different strains of the Escherichia coli bacterium were found to be sufficiently composition‐dependent so that they could be differentiated without the need for any advanced multivariate data analysis techniques.  相似文献   

19.
Triplex-forming oligonucleotides (TFOs) containing 9-deazaguanine N7-(2′-deoxyribonucleoside) 1a and halogenated derivatives 1b,c were synthesized employing solid-phase oligonucleotide synthesis. For that purpose, the phosphoramidite building blocks 5a – c and 8a – c were synthesized. Multiple incorporations of 1a – c in place of dC were performed within TFOs, which involved the sequence of five consecutive 1a – c ⋅ dG ⋅ dC triplets as well as of three alternating 1a – c ⋅ dG ⋅ dC and dT ⋅ dA ⋅ dT triplets. These TFOs were designed to bind in a parallel orientation to the target duplex. Triplex forming properties of these oligonucleotides containing 1a – c in the presence of Na+ and Mg2+ were studied by UV/melting-curve analysis and confirmed by circular-dichroism (CD) spectroscopy. The oligonucleotides containing 1a in the place of dC formed stable triplexes at physiological pH in the case of sequence of five consecutive 1a ⋅ dG ⋅ dC triplets as well as three alternating 1a – c ⋅ dG ⋅ dC and dT ⋅ dA ⋅ dT triplets. The replacement of 1a by 9-halogenated derivatives 1b,c further enhanced the stability of DNA triplexes. Nucleosides 1a – c also stabilized duplex DNA.  相似文献   

20.
Scalable methods currently are lacking for isolation of long ssDNA, an important material for numerous biotechnological applications. Conventional biomolecule purification strategies achieve target capture using solid supports, which are limited in scale and susceptible to contamination owing to nonspecific adsorption and desorption on the substrate surface. We herein disclose selective nascent polymer catch and release (SNAPCAR), a method that utilizes the reactivity of growing poly(acrylamide‐co‐acrylate) chains to capture acrylamide‐labeled molecules in free solution. The copolymer acts as a stimuli‐responsive anchor that can be precipitated on demand to pull down the target from solution. SNAPCAR enabled scalable isolation of multi‐kilobase ssDNA with high purity and 50–70 % yield. The ssDNA products were used to fold various DNA origami. SNAPCAR‐produced ssDNA will expand the scope of applications in nanotechnology, gene editing, and DNA library construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号