首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for simultaneous determination of urapidil and aripiprazole in human plasma. A simple liquid–liquid extraction with ethyl acetate was used for the sample preparation. Chromatographic separation was achieved on a Phenomenex C18 (4.6 × 50 mm, 5 µm) column with 0.1% formic acid–acetonitrile (10:90, v/v) as the mobile phase with flow rate of 0.6 mL/min. The quantitation of the target compounds was determined in a positive ion multiple reaction monitoring mode. Calibration plots were linear over the range of 2.0–2503.95 ng/mL for urapidil and 1.0–500.19 ng/mL for aripiprazole. The lower limit of quantitation for urapidil and aripiprazole was 2.0 and 1.0 ng/mL, respectively. Mean recovery was in the range of 69.94–75.62% for both analytes and internal standards. Intra‐day and inter‐day precisions of the assay at three concentrations were 2.56–5.89% with accuracy of 92.31–97.83% for urapidil, and 3.14–6.84% with accuracy of 91.38–94.42% for aripiprazole. The method was successfully applied to human pharmacokinetic study of urapidil and aripiprazole in healthy human male volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A sensitive and accurate HPLC‐MS/MS method was developed for the simultaneous determination of dextromethorphan, dextrorphan and chlorphenamine in human plasma. Three analytes were extracted from plasma by liquid–liquid extraction using ethyl acetate and separated on a Kromasil 60‐5CN column (3 µm, 2.1 × 150 mm) with mobile phase of acetonitrile–water (containing 0.1% formic acid; 50:50, v/v) at a flow rate of 0.2 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The calibration curve was linear over the range of 0.01–5 ng/mL for dextromethorphan, 0.02–5 ng/mL for dextrorphan and 0.025–20 ng/mL for chlorphenamine. The lower limits of quantification for dextromethorphan, dextrorphan and chlorphenamine were 0.01, 0.02 and 0.025 ng/mL, respectively. The intra‐ and inter‐day precisions were within 11% and accuracies were in the range of 92.9–102.5%. All analytes were proved to be stable during sample storage, preparation and analytic procedures. This method was first applied to the pharmacokinetic study in healthy Chinese volunteers after a single oral dose of the formulation containing dextromethorphan hydrobromide (18 mg) and chlorpheniramine malaeate (8 mg). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The study of pharmacokinetics of Ginkgo biloba extracts in Traditional Chinese Medicine was relatively recent. In this study, a simple, quick and sensitive LC‐MS/MS analytical method was developed for the determination of ginkgolides A, B, C and bilobalide in rat plasma. The analytes were completely separated from the endogenous compounds on an Agilent Zorbax Eclipse plus C18 column (50 mm × 3.0 mm, 1.8 µm) using an isocratic elution. The single‐run analysis time was as short as 5.0 min. Sample preparation for protein removal was accomplished used a simple methanol precipitation method, after SPE showing a simultaneous extraction and cleanup of extracts allowing for a direct analysis. Extraction recoveries in rat plasma for ginkgolides A, B, C and bilobalide ranged from 75.6% to 89.0%. The calibration curves were determined over the ranges 0.5–20,000 ng/mL for ginkgolides A, B, C and bilobalide respectively. The lower limits of quantification (LLOQ) of the analytes were 0.5 ng/mL. Inter‐day and intra‐day precision and accuracy were below 15% and between 85 and 115%, respectively. Finally, the developed method was successfully applied to a pharmacokinetic study following oral administration of the Ginkgo biloba extracts to the male ICR rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A simple and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous determination of sunitinib and its two metabolites in plasma of Chinese patients with metastatic renal cell carcinoma (mRCC). After simple one‐step protein precipitation with methanol–acetonitrile (1:1, v/v), all three analytes were separated on an Agilent Zorbax SB‐C18 column using a gradient mobile phase consisting of water (0.1% formic acid)–acetonitrile (0.1% formic acid) at a flow rate of 0.50 mL/min. The detection was performed in multiple reaction monitoring mode, using the transitions of m/z 399.0 → 326.2, m/z 371.0 → 283.1, m/z 343.0 → 283.1 and m/z 386.3 → 122.2 for sunitinib, M1, M2 and buspirone, respectively. The method was linear over the range of 0.10–100 ng/mL for all three analytes using only 50 μL of plasma and the lower limit of quantifications for the three analytes were all 0.10 ng/mL. The intra‐day and inter‐day precisions were all less than 15% and the accuracies were within the range of ±15%; recoveries were between 85.0 and 115%. The validated method was successfully applied to an explorative pharmacokinetic study of sunitinib in Chinese patients with mRCC following multi‐dose oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid and simple LC with MS/MS method for the simultaneous determination of metoprolol and its two CYP2D6‐derived metabolites, α‐hydroxy‐ and O‐desmethylmetoprolol, in human plasma was established. Metoprolol (MET), its two metabolites, and the internal standard chlorpropamide were extracted from plasma (50 μL) using ethyl acetate. Chromatographic separation was performed on a Luna CN column with an isocratic mobile phase consisting of distilled water and methanol containing 0.1% formic acid (60:40, v/v) at a flow rate of 0.3 mL/min. The total run time was 3.0 min per sample. Mass spectrometric detection was conducted by ESI in positive ion selected‐reaction monitoring mode. The linear ranges of concentration for MET, α‐hydroxymetoprolol, and O‐desmethylmetoprolol were 2–1000, 2–500, and 2–500 ng/mL, respectively, with a lower limit of quantification of 2 ng/mL for all analytes. The coefficient of variation for the assay's precision was ≤ 13.2%, and the accuracy was 89.1–110%. All analytes were stable under various storage and handling conditions and no relevant cross‐talk and matrix effect were observed. Finally, this method was successfully applied to assess the influence of CYP2D6 genotypes on the pharmacokinetics of MET after oral administration of 100 mg to healthy Korean volunteers.  相似文献   

7.
A UPLC/MS/MS method with simple protein precipitation has been validated for the fast simultaneous analysis of agomelatine, asenapine, amisulpride, iloperidone, zotepine, melperone, ziprasidone, vilazodone, aripiprazole and its metabolite dehydro‐aripiprazole in human serum. Alprenolol was applied as an internal standard. A BEH C18 (2.1 × 50 mm, 1.7 µm) column provided chromatographic separation of analytes using a binary mobile phase gradient (A, 2 mmol/L ammonium acetate, 0.1% formic acid in 5% acetonitrile, v/v/v; B, 2 mmol/L ammonium acetate, 0.1% formic acid in 95% acetonitrile, v/v/v). Mass spectrometric detection was performed in the positive electrospray ionization mode and ion suppression owing to matrix effects was evaluated. The validation criteria were determined: linearity, precision, accuracy, recovery, limit of detection, limit of quantification, reproducibility and matrix effect. The concentration range was as follows: 0.25–1000 ng/mL for agomelatine; 0.25–100 ng/mL for asenapine and iloperidone; 2.5–1000 ng/mL for amisulpride, aripiprazole, vilazodone and zotepine; 2.3–924.6 ng/mL for dehydroaripiprazole; 2.2–878.4 ng/mL for melperone; and 2.2–883.5 ng/mL for ziprasidone. Limits of quantitation below a therapeutic reference range were achieved for all analytes. Intra‐run precision of 0.4–5.5 %, inter‐run precision of 0.6–8.2% and overall recovery of 87.9–114.1% were obtained. The validated method was successfully implemented into routine practice for therapeutic drug monitoring in our hospital. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Tiopronin (TP) is a synthetic thiol compound without chromophore. By optimizing the chromatographic conditions and sample preparation processes, an improved LC‐MS/MS analytical method without derivatization has been developed and validated to determine TP concentrations in human plasma. After reduction with 1,4‐dithiothreitol, plasma samples were deproteinized with 10% perchloric acid. The post‐treatment samples were analyzed on a C8 column interfaced with a triple quadrupole tandem mass spectrometer in negative electrospray ionization mode. Methanol–5 mmol/L ammonium acetate (20:80, v/v) was used as the isocratic mobile phase. The assay was linear over the concentration range of 40.0–5000 ng/mL. The intra‐ and inter‐day precisions were within 12.9% in terms of relative standard deviation and the accuracy within 5.6% in terms of relative error. This simple and sensitive LC‐MS/MS method with short analytical time (3.5 min each sample) was successfully applied to the pharmacokinetic study of TP in healthy Chinese male volunteers after an oral dose of 300 mg TP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A fast, sensitive, and high‐throughput ultra‐HPLC–MS/MS method has been developed and validated for the simultaneous determination of three main active constituents of Euphorbiae pekinensis Radix in rat plasma. After addition of the internal standard, plasma samples were extracted by liquid–liquid extraction with ethyl acetate/isopropanol (1:1, v/v) and separated on a CAPCELL PAK C18 column (100 × 2.0 mm, 2 μm, Shiseido, Japan), using a gradient mobile phase system of methanol/water. The detection of the analytes was performed on a 4000Q UHPLC–MS/MS system with turbo ion spray source in the negative ion and multiple reaction‐monitoring mode. The linear range was 1.0–1000 ng/mL for 3,3′‐di‐O‐methyl ellagic acid‐4′‐Oβ‐d ‐glucopyranoside (i), 1.5–1500 ng/mL for 3,3′‐di‐O‐methyl ellagic acid‐4′‐Oβ‐d ‐xylopyranoside (ii), and 5.0–5000 ng/mL for 3,3′‐di‐O‐methyl ellagic acid (iii). The intra‐ and interday precision and accuracy of all the analytes were within 15%. The extraction recoveries of the three analytes and internal standard from plasma were all more than 80%. The validated method was first successfully applied to the evaluation of pharmacokinetic parameters of compounds 1 , 2 , and 3 in rat plasma after intragastric administration of the Euphorbiae pekinensis Radix extract.  相似文献   

10.
A sensitive and rapid LC‐MS/MS method was developed and validated for the determination of kadsurenone in rat plasma using lysionotin as the internal standard (IS). The analytes were extracted from rat plasma with acetonitrile and separated on a SB‐C18 column (50 × 2.1 mm, i.d.; 1.8 µm) at 30 °C. Elution was achieved with a mobile phase consisting of methanol–water–formic acid (65:35:0.1, v/v/v) at a flow rate of 0.30 mL/min. Detection and quantification for analytes were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 357.1 → 178.1 for kadsurenone, and m/z 345.1 → 315.1 for IS. Calibration curves were linear over a concentration range of 4.88–1464 ng/mL with a lower limit of quantification of 4.88 ng/mL. The intra‐ and inter‐day accuracies and precisions were <8.9%. The LC‐MS/MS assay was successfully applied for oral pharmacokinetic evaluation of kadsurenone using the rat as an animal model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A simple and reliable LC‐ESI‐MS method for the determination of peimine and peiminine in rat plasma was developed for the first time. The method was proven to be specific and sensitive by carrying out validation. The analytes were extracted from rat plasma via solid‐phase extraction on Waters Oasis MCX cartridges. Chromatography separation was achieved on a C18 column using 10 mM ammonium acetate (adjusted to pH 3.0 with glacial acetic acid)–acetonitrile (85:15, v/v) as mobile phase. The linear range was 1–100 ng/mL for peimine and peiminine. Intra‐ and inter‐day precisiond were less than 10%. Accuracies were within 85–115% of their nominal concentrations. The limit of quantification was 1 ng/mL for both analytes. The developed assay was successfully applied to pharmacokinetic study of peimine and peiminine in rats orally administered the alkaloids extracts from Bulbus Fritillariae, demonstrating a possible broader spectrum of applications of this method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A new, rapid, sensitive and specific LC‐MS/MS method has been developed and validated for the simultaneous quantification of tenofovir and lamivudine in human plasma using abacavir as an internal standard. An API‐4000 LC‐MS/MS with electrospray ionization was operated in multiple‐reaction monitoring mode for the analysis. The analytes were extracted from plasma by solid‐phase extraction technique using an Oasis HLB cartridge. The reconstituted samples were chromatographed on a Chromolith ROD speed C18 column using a mixture of 0.1% formic acid in water and acetonitrile (90:10 v/v) at a flow‐rate of 1 mL/min. The method was validated as per the FDA guidelines. The calibration curves were found to be linear in the range of 5–600 ng/mL for tenofovir and 25– 4000 ng/mL for lamivudine. The intra‐ and inter‐day precision and accuracy results were well within the acceptable limits. A run time of 2.8 min consumed for each sample made it possible to analyze more samples per day. The proposed assay method was found to be applicable to a pharmacokinetic study in human male volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of ramelteon and its active metabolite M‐II in human plasma. After extraction from 200 μL of plasma by protein precipitation, the analytes and internal standard (IS) diazepam were separated on a Hedera ODS‐2 (5 μm, 150 × 2.1 mm) column with a mobile phase consisted of methanol–0.1% formic acid in 10 mm ammonium acetate solution (85:15, v/v) delivered at a flow rate of 0.5 mL/min. Mass spectrometric detection was operated in positive multiple reaction monitoring mode. The calibration curves were linear over the concentration range of 0.0500–30.0 ng/mL for ramelteon and 1.00–250 ng/mL for M‐II, respectively. This method was successfully applied to a clinical pharmacokinetic study in healthy Chinese volunteers after a single oral administration of ramelteon. The maximum plasma concentration (Cmax), the time to the Cmax and the elimination half‐life for ramelteon were 4.50 ± 4.64ng/mL, 0.8 ± 0.4h and 1.0 ± 0.9 h, respectively, and for M‐II were 136 ± 36 ng/mL, 1.1 ± 0.5 h, 2.1 ± 0.4 h, respectively.  相似文献   

15.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS) quantitative detection method, using cefalexin as internal standard, was developed for the analysis of faropenem in human plasma and urine. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C18 reversed-phase column with 0.1% formic acid-methanol (45:55, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves with good linearities (r=0.9991 for plasma sample and r=0.9993 for urine sample) were obtained in the range 5-4000 ng/mL for faropenem. The limit of detection was 5 ng/mL. Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of faropenem in humans, and to our knowledge, it is the first time the pharmacokinetic of faropenem has been elucidated in vivo using LC-MS/MS.  相似文献   

16.
;A simple and reproducible method was developed for the quantification of ketamine and S(+)‐ketamine in dog plasma using a high‐performance liquid chromatography system coupled to a positive ion electrospray mass spectrometric analysis. Solid‐phase extraction was used for extracting analytes from dog plasma samples. The analytes were separated on a Zorbax SB C18 column (100 × 2.1 mm, 3.5 μm) with acetonitrile–formate buffer (10 mM ammonium formate and 0.3% formic acid) (17 : 83, v/v) as mobile phase at a flow‐rate of 0.2 mL/min. Detection was operated under selected ion monitoring mode. [M + H]+ at m/z 238 for ketamine and S(+)‐ketamine and [M + H]+ at m/z 180 for phenacetin (internal standard) were selected as detecting ions, respectively. The method was linear in the concentration range 51.6–2580 ng/mL. The intra‐ and inter‐day precisions (RSD %) were within 11.3% and the assay accuracies ranged from 80.0 to 101.4%. Their average recoveries were greater than 91.1% at all test concentrations. The analytes were proved to be stable during all sample storage, preparation and analysis procedures. The method was successfully applied to the toxicokinetics study and comparison of ketamine and S (+)‐ketamine following intravenous administration to dogs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A simple and sensitive liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of methylene blue (MB) and its major metabolite, azure B (AZB), in rat plasma. A simple protein precipitation using acetonitrile was followed by injection of the supernatant on to a Zorbax HILIC Plus column (3.5 µm, 2.1 × 100 mm) with isocratic mobile phase consisting of 5 mM ammonium acetate in 10:90 (v/v) water:methanol at a flow rate of 0.3 mL/min and detection in positive ionization mode. The standard curve was linear over the concentration range from 1 to 1000 ng/mL for MB and AZB with coefficient of determination above 0.9930. The lower limit of quantification was 1 ng/mL using 20 μL of rat plasma sample. The intra‐ and inter‐assay precision and accuracy were <12%. The developed analytical method was successfully applied to the pharmacokinetic study of MB and AZB in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A simple and rapid liquid chromatography with tandem mass spectrometry method has been developed and validated for the determination of rabeprazole and its two active metabolites, rabeprazole thioether and desmethyl rabeprazole thioether, in human urine using donepezil as the internal standard. The sample preparation procedure involved a simple dilution of urine sample with methanol (1:3, v/v). The chromatographic separation was achieved on a Hedera ODS‐2 C18 column using a mixture of methanol/10 mmol/L ammonium acetate solution (containing 0.05% formic acid; 55:45, v/v) as the mobile phase. The method was validated over the concentration ranges of 0.15–100 ng/mL for rabeprazole, 0.30–400 ng/mL for rabeprazole thioether, and 0.05–100 ng/mL for desmethyl rabeprazole thioether. The established method was highly sensitive with a lower limit of quantification of 0.15 ng/mL for rabeprazole, 0.30 ng/mL for rabeprazole thioether, and 0.05 ng/mL for desmethyl rabeprazole thioether. The intra‐ and interbatch precision was <4.5% for the low, medium, and high quality control samples of all the analytes. The recovery of the analytes was in the range 95.4–99.0%. The method was successfully applied to a urinary excretion profiles after intravenous infusion administration of 20 mg rabeprazole sodium in healthy volunteers.  相似文献   

19.
An ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the simultaneous determination of carvedilol and its pharmacologically active metabolite 4′‐hydroxyphenyl carvedilol in human plasma using their deuterated internal standards (IS). Samples were prepared by solid‐phase extraction using 100 μL human plasma. Chromatographic separation of analytes was achieved on UPLC C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile‐4.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (78:22, v/v) as the mobile phase. The multiple reaction monitoring transitions for both the analytes and IS were monitored in the positive electrospray ionization mode. The method was validated over a concentration range of 0.05–50 ng/mL for carvedilol and 0.01‐10 ng/mL for 4′‐hydroxyphenyl carvedilol. Intra‐ and inter‐batch precision (% CV) and accuracy for the analytes varied from 0.74 to 3.88 and 96.4 to 103.3% respectively. Matrix effect was assessed by post‐column analyte infusion and by calculation of precision values (coefficient of variation) in the measurement of the slope of calibration curves from eight plasma batches. The assay recovery was within 94–99% for both the analytes and IS. The method was successfully applied to support a bioequivalence study of 12.5 mg carvedilol tablets in 34 healthy subjects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A simple and sensitive liquid chromatography–electrospray ionization–tandem mass spectrometry (LC‐ESI‐MS/MS) technique was developed and validated for the determination of sibutramine and its N‐desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t‐butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse‐phase Luna C18 column with a mobile phase of acetonitrile–10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI‐MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05–20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra‐ and inter‐day validation for sibutramine, M1 and M2 were acceptable. This LC‐MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号