首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones. The use of a base is essential for the reaction to proceed. The reaction proceeds, even in the absence of a ligand, and under mild reaction conditions (40 °C). An electron-donating group on the aromatic ring facilitates the reaction. The reaction was also applicable to carbamate (C–O bond activation), methylthio (C–S bond activation), and cyano (C–CN bond activation) groups as leaving groups.

The Ni-catalyzed reaction of ortho-phenoxy-substituted aromatic amides with alkynes in the presence of LiOtBu as a base results in C–O/N–H annulation with the formation of 1(2H)-isoquinolinones.  相似文献   

2.
The amide bond N?C activation represents a powerful strategy in organic synthesis to functionalize the historically inert amide linkage. This personal account highlights recent remarkable advances in transition‐metal‐free activation of amides by N?C bond cleavage, focusing on both (1) mechanistic aspects of ground‐state‐destabilization of the amide bond enabling formation of tetrahedral intermediates directly from amides with unprecedented selectivity, and (2) synthetic utility of the developed transformations. Direct nucleophilic addition to amides enables a myriad of powerful methods for the formation of C?C, C?N, C?O and C?S bonds, providing a straightforward and more synthetically useful alternative to acyl‐metals.  相似文献   

3.
A novel approach for the efficient cleavage of the amide bonds in tertiary amides is reported. Based on the selective radical abstraction of a benzylic hydrogen atom by a CuBr2/Selectfluor hybrid system followed by a selective cleavage of an N–C bond, an acyl fluoride intermediate is formed. This intermediate may then be derivatized in a one-pot fashion. The reaction proceeds under mild conditions and exhibits a broad substrate scope with respect to the tertiary amide moiety as well as to nitrogen, oxygen, and carbon nucleophiles for the subsequent derivatization. Mechanistic studies suggest that the present reaction proceeds via a radical–polar crossover process that involves benzylic carbon radicals generated by the selective radical abstraction of a benzylic hydrogen atom by the CuBr2/Selectfluor hybrid system. Furthermore, a synthetic application of this method for the selective cleavage of peptides is described.

A novel approach for the efficient cleavage of the amide bonds in tertiary amides is reported.  相似文献   

4.
Deoxynivalenol (DON) is one of the most common mycotoxins in grains, causing gastrointestinal inflammation, neurotoxicity, hepatotoxicity and embryotoxicity, even at a low quantity. In this study, a facile electrochemical aptasensor was established for the rapid and sensitive determination of DON based on a multifunctional N-doped Cu-metallic organic framework (N–Cu–MOF) nanomaterial. The N–Cu–MOF, with a large specific surface area and good electrical conductivity, served not only as an optimal electrical signal probe but also as an effective supporting substrate for stabilizing aptamers through the interactions of amino (-NH2) and copper. Under the optimal conditions, the proposed sensor provided a wide linear concentration range of 0.02–20 ng mL−1 (R2 = 0.994), showing high sensitivity, with a lower detection limit of 0.008 ng mL−1, and good selectivity. The sensor’s effectiveness was also verified in real spiked wheat samples with satisfactory recoveries of 95.6–105.9%. The current work provides a flexible approach for the rapid and sensitive analysis of highly toxic DON in food samples and may also be easily extended to detect other hazardous substances with alternative target-recognition aptamers.  相似文献   

5.
Herein, we show that acyclic amides that have recently enabled a series of elusive transition‐metal‐catalyzed N?C activation/cross‐coupling reactions are highly twisted around the N?C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N‐glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α‐carbon atom. The 15N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground‐state twist as a blueprint for activation of amides toward N?C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non‐planar amide bonds.  相似文献   

6.
IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) represents the most important NHC (NHC = N-heterocyclic carbene) ligand throughout the field of homogeneous catalysis. Herein, we report the synthesis, catalytic activity, and full structural and electronic characterization of novel, sterically-bulky, easily-accessible NHC ligands based on the hash peralkylation concept, including IPr#, Np# and BIAN-IPr#. The new ligands have been commercialized in collaboration with Millipore Sigma: IPr#HCl, 915653; Np#HCl; 915912; BIAN-IPr#HCl, 916420, enabling broad access of the academic and industrial researchers to new ligands for reaction optimization and screening. In particular, the synthesis of IPr# hinges upon cost-effective, modular alkylation of aniline, an industrial chemical that is available in bulk. The generality of this approach in ligand design is demonstrated through facile synthesis of BIAN-IPr# and Np#, two ligands that differ in steric properties and N-wingtip arrangement. The broad activity in various cross-coupling reactions in an array of N–C, O–C, C–Cl, C–Br, C–S and C–H bond cross-couplings is demonstrated. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au(i), Rh(i) and Pd(ii) is presented. Given the tremendous importance of NHC ligands in homogenous catalysis, we expect that this new class of NHCs will find rapid and widespread application.

We report novel, sterically-bulky, easily-accessible NHC ligands based on the hash peralkylation concept. The new ligands have been commercialized in collaboration with Millipore Sigma: IPr#HCl, 915653; Np#HCl; 915912; BIAN-IPr#HCl, 916420.  相似文献   

7.
A series of well-defined, air- and moisture-stable (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) complexes has been used in several catalytic reactions: Suzuki-Miyaura cross-coupling, catalytic dehalogenation of aryl halides, and aryl amination. The scope of the three processes using various substrates was examined. A general system involving the use of (IPr)Pd(allyl)Cl as catalyst and NaO(t)Bu as base has proven to be highly active for the Suzuki-Miyaura cross-coupling of activated and unactivated aryl chlorides and bromides, for the catalytic dehalogenation of aryl chlorides, and for the catalytic aryl amination of aryl triflates. All reactions proceed in short reaction times and at mild temperatures. The system has also proven to be compatible with the microwave-assisted Suzuki-Miyaura cross-coupling and catalytic dehalogenation processes, affording yields similar to those of the conventionally heated analogous reactions.  相似文献   

8.
The structure and properties of amides are of tremendous interest in organic synthesis and biochemistry. Traditional amides are planar and the carbonyl group non-electrophilic due to nN→π*C=O conjugation. In this study, we report electrophilicity scale by exploiting 17O NMR and 15N NMR chemical shifts of acyclic twisted and destabilized acyclic amides that have recently received major attention as precursors in N-C(O) cross-coupling by selective oxidative addition as well as precursors in electrophilic activation of N-C(O) bonds. Most crucially, we demonstrate that acyclic twisted amides feature electrophilicity of the carbonyl group that ranges between that of acid anhydrides and acid chlorides. Furthermore, a wide range of electrophilic amides is possible with gradually varying carbonyl electrophilicity by steric and electronic tuning of amide bond properties. Overall, the study quantifies for the first time that steric and electronic destabilization of the amide bond in common acyclic amides renders the amide bond as electrophilic as acid anhydrides and chlorides. These findings should have major implications on the fundamental properties of amide bonds.  相似文献   

9.
The syntheses of (DIM)Ni(NO3)2 and (DIM)Ni(NO2)2, where DIM is a 1,4-diazadiene bidentate donor, are reported to enable testing of bis boryl reduced N-heterocycles for their ability to carry out stepwise deoxygenation of coordinated nitrate and nitrite, forming O(Bpin)2. Single deoxygenation of (DIM)Ni(NO2)2 yields the tetrahedral complex (DIM)Ni(NO)(ONO), with a linear nitrosyl and κ1-ONO. Further deoxygenation of (DIM)Ni(NO)(ONO) results in the formation of dimeric [(DIM)Ni(NO)]2, where the dimer is linked through a Ni–Ni bond. The lost reduced nitrogen byproduct is shown to be N2O, indicating N–N bond formation in the course of the reaction. Isotopic labelling studies establish that the N–N bond of N2O is formed in a bimetallic Ni2 intermediate and that the two nitrogen atoms of (DIM)Ni(NO)(ONO) become symmetry equivalent prior to N–N bond formation. The [(DIM)Ni(NO)]2 dimer is susceptible to oxidation by AgX (X = NO3, NO2, and OTf) as well as nitric oxide, the latter of which undergoes nitric oxide disproportionation to yield N2O and (DIM)Ni(NO)(ONO). We show that the first step in the deoxygenation of (DIM)Ni(NO)(ONO) to liberate N2O is outer sphere electron transfer, providing insight into the organic reductants employed for deoxygenation. Lastly, we show that at elevated temperatures, deoxygenation is accompanied by loss of DIM to form either pyrazine or bipyridine bridged polymers, with retention of a BpinO bridging ligand.

Deoxygenation of nitrogen oxyanions coordinated to nickel using reduced borylated heterocycles leads to N–N bond formation and N2O liberation. The nickel dimer product facilitates NO disproportionation, leading to a synthetic cycle.  相似文献   

10.
The reaction of (μ‐Cl)2Ni2(NHC)2 (NHC=1,3‐bis(2,6‐diisopropylphenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ylidene (IPr) or 1,3‐bis(2,6‐diisopropylphenyl)imidazolidin‐2‐ylidene (SIPr)) with either one equivalent of sodium cyclopentadienyl (NaCp) or lithium indenyl (LiInd) results in the formation of diamagnetic NHC supported NiI dimers of the form (μ‐Cp)(μ‐Cl)Ni2(NHC)2 (NHC=IPr ( 1 a ) or SIPr ( 1 b ); Cp=C5H5) or (μ‐Ind)(μ‐Cl)Ni2(NHC)2 (NHC=IPr ( 2 a ) or SIPr ( 2 b ); Ind=C7H9), which contain bridging Cp and indenyl ligands. The corresponding reaction between two equivalents of NaCp or LiInd and (μ‐Cl)2Ni2(NHC)2 (NHC=IPr or SIPr) generates unusual 17 valence electron NiI monomers of the form (η5‐Cp)Ni(NHC) (NHC=IPr ( 3 a ) or SIPr ( 3 b )) or (η5‐Ind)Ni(NHC) (NHC=IPr ( 4 a ) or SIPr ( 4 b )), which have nonlinear geometries. A combination of DFT calculations and NBO analysis suggests that the NiI monomers are more strongly stabilized by the Cp ligand than by the indenyl ligand, which is consistent with experimental results. These calculations also show that the monomers have a lone unpaired‐single‐electron in their valence shell, which is the reason for the nonlinear structures. At room temperature the Cp bridged dimer (μ‐Cp)(μ‐Cl)Ni2(NHC)2 undergoes homolytic cleavage of the Ni?Ni bond and is in equilibrium with (η5‐Cp)Ni(NHC) and (μ‐Cl)2Ni2(NHC)2. There is no evidence that this equilibrium occurs for (μ‐Ind)(μ‐Cl)Ni2(NHC)2. DFT calculations suggest that a thermally accessible triplet state facilitates the homolytic dissociation of the Cp bridged dimers, whereas for bridging indenyl species this excited triplet state is significantly higher in energy. In stoichiometric reactions, the NiI monomers (η5‐Cp)Ni(NHC) or (η5‐Ind)Ni(NHC) undergo both oxidative and reductive processes with mild reagents. Furthermore, they are rare examples of active NiI precatalysts for the Suzuki–Miyaura reaction. Complexes 1 a , 2 b , 3 a , 4 a and 4 b have been characterized by X‐ray crystallography.  相似文献   

11.
A dinickel(0)–N2 complex, stabilized with a rigid acridane-based PNP pincer ligand, was studied for its ability to activate C(sp2)–H and C(sp2)–O bonds. Stabilized by a Ni–μ–N2–Na+ interaction, it activates C–H bonds of unfunctionalized arenes, affording nickel–aryl and nickel–hydride products. Concomitantly, two sodium cations get reduced to Na(0), which was identified and quantified by several methods. Our experimental results, including product analysis and kinetic measurements, strongly suggest that this C(sp2)–H activation does not follow the typical oxidative addition mechanism occurring at a low-valent single metal centre. Instead, via a bimolecular pathway, two powerfully reducing nickel ions cooperatively activate an arene C–H bond and concomitantly reduce two Lewis acidic alkali metals under ambient conditions. As a novel synthetic protocol, nickel(ii)–aryl species were directly synthesized from nickel(ii) precursors in benzene or toluene with excess Na under ambient conditions. Furthermore, when the dinickel(0)–N2 complex is accessed via reduction of the nickel(ii)–phenyl species, the resulting phenyl anion deprotonates a C–H bond of glyme or 15-crown-5 leading to C–O bond cleavage, which produces vinyl ether. The dinickel(0)–N2 species then cleaves the C(sp2)–O bond of vinyl ether to produce a nickel(ii)–vinyl complex. These results may provide a new strategy for the activation of C–H and C–O bonds mediated by a low valent nickel ion supported by a structurally rigidified ligand scaffold.

A structurally rigidified nickel(0) complex was found to be capable of cleaving both C(sp2)–H and C(sp2)–O bonds.  相似文献   

12.
Using the classical Ugi four-component reaction to fuse an amine, ketone, carboxylic acid, and isocyanide, here we prepared a short library of N-alkylated α,α-dialkylglycine derivatives. Due to the polyfunctionality of the dipeptidic scaffold, this highly steric hindered system shows an interesting acidolytic cleavage of the C-terminal amide. In this regard, we studied the structure-acid lability relationship of the C-terminal amide bond (cyclohexylamide) of N-alkylated α,α-dialkylglycine amides 1a–n in acidic media and, afterward, it was established that the most important structural features related to its cleavage. Then, it was demonstrated that electron-donating effects in the aromatic amines, flexible acyl chains (Gly) at the N-terminal and the introduction of cyclic compounds into dipeptide scaffolds, increased the rate of acidolysis. All these effects are related to the ease with which the oxazolonium ion intermediate forms and they promote the proximity of the central carbonyl group to the C-terminal amide, resulting in C-terminal amide cleavage. Consequently, these findings could be applied for the design of new protecting groups, handles for solid-phase synthesis, and linkers for conjugation, due to its easily modulable and the fact that it allows to fine tune its acid-lability.  相似文献   

13.
Herein, we describe the first structural characterization of N‐alkylated twisted amides prepared directly by N‐alkylation of the corresponding non‐planar lactams. This study provides the first experimental evidence that N‐alkylation results in a dramatic increase of non‐planarity around the amide N?C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O‐Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N?C(O) moiety of N‐alkylated amides, indicating the lack of nN to π*C=O conjugation. Most crucially, we demonstrate that N‐alkylation activates the otherwise unreactive amide bond towards σ N?C cleavage by switchable coordination.  相似文献   

14.
Treatment of alkyl nitriles with NiX(2).6H(2)O (X = Cl, NO(3)) and 2-propanone oxime, followed by (X = Cl) addition of [i-Pr(4)N](NO(3)) for precipitation of the product, resulted in the formation of amidinium nitrates [RC([double bond]NH(2))NH(2)](NO(3)) (R = Me, Et, n-Pr). The reaction went to another direction with NiX(2).2H(2)O, i.e., the reaction between neat RCN (R = Me, Et, n-Pr, i-Pr, n-Bu, CH(2)Cl, CH(2)C(6)H(4)OMe-p) and NiCl(2).2H(2)O/2-propanone oxime (other ketoximes can also be used) gave the (imidoylamidine)Ni(II) complexes [Ni[N(H)[double bond]C(R)NHC(R)[double bond]NH](2)](2+) (1(2+)-7(2+)). The latter were isolated in good yields (65-91%) as the bis-chloride salts 1.Cl(2)-6.Cl(2) and the mixed salt 7.(Cl)(p-MeOC(6)H(4)CH(2)CO(2)). Remarkably, the latter transformation does not proceed at all if NiCl(2).2H(2)O or the ketoxime are taken alone. Liberation of imidoylamidines was performed for one alkyl-containing complex [2.Cl(2)] and one benzyl-containing complex [7.(Cl)(p-MeOC(6)H(4)CH(2)CO(2))], by (i) addition of HBF(4).Et(2)O to the acetonitrile solution of the complexes to yield [N(H)[double bond]C(R)NHC(R)[double bond]NH].2HBF(4) (R = Et 8 and R = CH(2)C(6)H(4)OMe-p 9) or (ii) substitution for ethanediamine (en) with following precipitation of the complex [Ni(en)(3)]Cl(2) with formation of free N(H)[double bond]C(R)NHC(R)[double bond]NH (R = Et 10 and R = CH(2)C(6)H(4)OMe-p 11). In contrast to the liberation in nonaqueous media, treatment of 2.Cl(2) and 7.(Cl)(p-MeOC(6)H(4)CH(2)CO(2)) with Na(2)EDTA.2H(2)O in water-methanol solutions led to substitution and hydrolysis to furnish the acyl amides [EtC([double bond]O)](2)NH (12) and [p-MeOC(6)H(4)CH(2)C([double bond]O)](2)NH (13). Alternatively, 12 and 13 were obtained by hydrolysis of 10 and 11 in water at pH ca. 8.5. It was shown that the oxime complexes trans-[NiCl(2)(C(4)H(8)C[double bond]NOH)(4)] (14) or cis-[Ni(O,O-NO(3))(2)(C(4)H(8)C[double bond]NOH)(2)] (15) can be intermediates in the formation of amidines and imidoylamidines. The sequence of the Ni(II)/oxime mediated formation of (imidoylamidine)Ni complexes and liberation (or hydrolytic liberation) of the ligands opens up a novel, facile and environmentally benign route to imidoylamidines and acyl amides.  相似文献   

15.
Density functional theory (DFT) calculations were performed to investigate the mechanism and the enantioselectivity of the aza-Henry reaction of isatin-derived ketimine catalyzed by chiral guanidine–amide catalysts at the M06-2X-D3/6-311+G(d,p)//M06-2X-D3/6-31G(d,p) (toluene, SMD) theoretical level. The catalytic reaction occurred via a three-step mechanism: (i) the deprotonation of nitromethane by a chiral guanidine–amide catalyst; (ii) formation of C–C bonds; (iii) H-transfer from guanidine to ketimine, accompanied with the regeneration of the catalyst. A dual activation model was proposed, in which the protonated guanidine activated the nitronate, and the amide moiety simultaneously interacted with the ketimine substrate by intermolecular hydrogen bonding. The repulsion of CPh3 group in guanidine as well as N-Boc group in ketimine raised the Pauli repulsion energy (∆EPauli) and the strain energy (∆Estrain) of reacting species in the unfavorable si-face pathway, contributing to a high level of stereoselectivity. A new catalyst with cyclopropenimine and 1,2-diphenylethylcarbamoyl as well as sulfonamide substituent was designed. The strong basicity of cyclopropenimine moiety accelerated the activation of CH3NO2 by decreasing the energy barrier in the deprotonation step. The repulsion between the N-Boc group in ketimine and cyclohexyl group as well as chiral backbone in the new catalyst raised the energy barrier in C–C bond formation along the si-face attack pathway, leading to the formation of R-configuration product. A possible synthetic route for the new catalyst is also suggested.  相似文献   

16.
A highly selective ruthenium-catalyzed C–H activation/annulation of alkyne-tethered N-alkoxybenzamides has been developed. In this reaction, diverse products from inverse annulation can be obtained in moderate to good yields with high functional group compatibility. Insightful experimental and theoretical studies indicate that the reaction to the inverse annulation follows the Ru(ii)–Ru(iv)–Ru(ii) pathway involving N–O bond cleavage prior to alkyne insertion. This is highly different compared to the conventional mechanism of transition metal-catalyzed C–H activation/annulation with alkynes, involving alkyne insertion prior to N–O bond cleavage. Via this pathway, the in situ generated acetic acid from the N–H/C–H activation step facilitates the N–O bond cleavage to give the Ru-nitrene species. Besides the conventional mechanism forming the products via standard annulation, an alternative and novel Ru(ii)–Ru(iv)–Ru(ii) mechanism featuring N–O cleavage preceding alkyne insertion has been proposed, affording a new understanding of transition metal-catalyzed C–H activation/annulation.

A highly selective ruthenium-catalyzed C–H activation/annulation through a pathway involving N–O bond cleavage prior to alkyne insertion is developed.  相似文献   

17.
A metal-free C–H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C–C cleavage. Compared to the simple N–H insertion manipulation of diazo, this method elegantly accomplishes a tandem N–H insertion/SEAr/C–C cleavage/aromatization reaction, and the synthetic utility of this new transformation is exemplified by the succinct syntheses of trisphaeridine and bicolorine alkaloids.

A metal-free C–H [5 + 1] annulation reaction of 2-arylanilines with diazo compounds has been achieved, giving rise to two types of prevalent phenanthridines via highly selective C–C cleavage.  相似文献   

18.
Ab initio MP2/aug’-cc-pVTZ calculations have been carried out to identify and characterize equilibrium structures and transition structures on the 1-oxo-3-hydroxy-2-propene: Lewis acid potential energy surfaces, with the acids LiH, LiF, BeH2, and BeF2. Two equilibrium structures, one with the acid interacting with the C=O group and the other with the interaction occurring at the O–H group, exist on all surfaces. These structures are separated by transition structures that present the barriers to the interconversion of the two equilibrium structures. The structures with the acid interacting at the C=O group have the greater binding energies. Since the barriers to convert the structures with interaction occurring at the O–H group are small, only the isomers with interaction occurring at the C=O group could be experimentally observed, even at low temperatures. Charge-transfer energies were computed for equilibrium structures, and EOM-CCSD spin–spin coupling constants 2hJ(O–O), 1hJ(H–O), and 1J(O–H) were computed for equilibrium and transition structures. These coupling constants exhibit a second-order dependence on the corresponding distances, with very high correlation coefficients.  相似文献   

19.
Ni(II) dihalides bearing two different or identical NHC ligands have been prepared via a controlled indene elimination synthesis, and the former product provides a new route for the design of biscarbene Ni(II)-based catalysts. The indene elimination reaction of the indenynickel(II) complex (1-H-Ind)Ni(NHC)X (Ind = indenyl) with one equiv. of a distinct imidazolium salt at 100 °C afforded the first example of Ni(II) dihalides bearing two different NHC ligands, i.e., Ni(iPr)(IPr)X(2) [iPr = 1,3-diisopropylimidazol-2-ylidene, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), X = Cl, 1; X = Br, 2] and Ni(iPr)(IMes)Br(2) [IMes = 1,3-bis(mesityl)imidazol-2-ylidene, 3]. Alternatively, complexes 1-3 can be synthesized using a bis-indenyl Ni(II) complex (1-H-Ind)(2)Ni as starting materials via a step-by-step indene elimination at different reaction temperatures. The direct reaction of (1-R-Ind)(2)Ni (R = H or Me) with two equiv. of imidazolium salts at 100 °C afforded Ni(II) dihalides bearing two identical NHC ligands, i.e., Ni(iPr)X(2) (X = Cl, 4; X = Br, 5) and Ni(IPr)Cl(2) (6). All of these complexes were characterized by elemental analysis, NMR spectroscopy and X-ray crystallography for complexes 1-5. The two identical or different NHC ligands in complexes 1-6 changed the coordination sphere of the nickel center from a typical square-planar geometry to a slightly tetrahedral array. A preliminary catalytic study on the cross-coupling reactions of aryl Grignard reagents with aryl halides revealed that complexes 1 and 2 possess the highest activity. In comparison, complexes 3 and 6 exhibited moderate activity and the least active complexes were 4 and 5.  相似文献   

20.
We have analysed 131 fragment-to-lead (F2L) examples targeting a wide variety of protein families published by academic and industrial laboratories between 2015–2019. Our assessment of X-ray structural data identifies the most common polar functional groups involved in fragment-protein binding are: N–H (hydrogen bond donors on aromatic and aliphatic N–H, amides and anilines; totalling 35%), aromatic nitrogen atoms (hydrogen bond acceptors; totalling 23%), and carbonyl oxygen group atoms (hydrogen bond acceptors on amides, ureas and ketones; totalling 22%). Furthermore, the elaboration of each fragment into its corresponding lead is analysed to identify the nominal synthetic growth vectors. In ∼80% of cases, growth originates from an aromatic or aliphatic carbon on the fragment and more than 50% of the total bonds formed are carbon–carbon bonds. This analysis reveals that growth from carbocentric vectors is key and therefore robust C–H functionalisation methods that tolerate the innate polar functionality on fragments could transform fragment-based drug discovery (FBDD). As a further resource to the community, we have provided the full data of our analysis as well as an online overlay page of the X-ray structures of the fragment hit and leads: https://astx.com/interactive/F2L-2021/

An in depth meta analysis of 131 fragment-to-lead case-studies has shown the importance of synthetic methods that allow carbon-centred synthetic elaboration in the presence of polar pharmacophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号