首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distortion of the starting zone upon its electrophoretic migration toward the detection window gives rise to both symmetrical zones caused by diffusion, sedimentation in the horizontal section of the capillary and the curvature of the capillary, and asymmetrical zones having their origin in Joule heating, sedimentation in the vertical section of the capillary, pH and conductivity differences between the sample zone and the surrounding buffer, solute adsorption onto the capillary wall, and association-dissociation of complexes between the analyte and a buffer constituent or between analytes. Interestingly and importantly a theoretical study shows that moderate pH and conductivity differences as well as adsorption and all of the above interactions when they are characterized by a fast on/off kinetics do not increase the zone broadening (or only slightly), because the sharpening of one boundary of the zone is about the same as the broadening of the other boundary. In addition the peak symmetry caused by a conductivity difference is in most experiments counteracted by a pH difference. The experimentally determined plate numbers in the absence of electroosmosis exceeded one million per meter in some experiments (Part II). These plate numbers are among the highest reported [Z. Zhao, A. Malik, M.L. Lee, Anal. Chem. 65 (1993) 2747; M. Gilges, K. Kleemiss, G. Schomburg, Anal. Chem. 66 (1994) 2038; H. Wan, M. Ohman, L.G. Blomberg, J. Chromatogr. A 924 (2001) 591 (plate numbers determined in the presence of electroosmosis may be higher, although the width of the zone in the capillary may be larger) [p. 680 in S. Hjertén, Electrophoresis 11 (1990) 665]). Capillary free zone electrophoresis is perhaps the only separation method, which, under optimum conditions, gives a plate number not far from the theoretical limit. A prerequisite for this high performance is that the polyacrylamide-coated capillary is washed with 2 M HCl between the runs and stored in water over night (Part II). The difference between the experimentally determined total variance and the sum of the calculated variances originating from the width of the starting zone, longitudinal diffusion, Joule heating, sedimentation in the vertical section of the capillary, curvature of the capillary (i.e., the sum of all other variances) was in our most successful experiments about 28% of the variance of diffusion. The zone broadening, 2sigma, caused by diffusion was estimated at 0.77 mm. The total zone width (2sigma) calculated from the experimentally determined plate number was as small as 1 mm when the migration distance was 40 cm. Accordingly, the only efficient way to reduce drastically the total zone width is to decrease the analysis time and, thereby, the diffusional broadening. An important finding was that the variance originating from the loops of the capillary is not always negligible in high-performance runs. Therefore, one should employ straight capillaries and avoid CE apparatus with cartridges that require a strong curvature of the capillary, common in most commercial instruments. Mathematical formulas have been derived for the sedimentation of the solute zone, the enrichment factor, and the migration time in experiments where the solute is dissolved in a dilute running buffer. This zone sharpening method gave very narrow starting zones (0.04-0.4 mm). However, upon high dilution of the buffer the enrichment becomes so strong that part of the sample zone probably sediments out of the capillary; the almost inevitable change in pH may decrease the mobility of the proteins and, thus, cause the enrichment factor to become still lower than expected. Diffusion of the protein in the very narrow starting zone (located close to the tip of the capillary) and sometimes the thermal expansion of the buffer in the capillary contributes to additional loss of protein in the enrichment step. In some buffers, the interaction between the protein and the buffer constituents is so slow that the peaks become broad. Therefore, different types of buffers should be tested when high resolution is required. The relation sigma2 (the variance of the interaction between a protein and the buffer constituents) = constant x u (the mobility) seems to be valid for all proteins in the applied sample, at least when they have similar molecular masses. To facilitate the understanding of the progress of a free zone electrophoresis experiment, we have discussed in simple terms how the concentrations of the background electrolytes become rearranged during a run and why the difference between the mobilities of the proteins and the mobilities of the background electrolyte determines whether a peak exhibits fronting or tailing. A theoretical analysis of zone broadening in capillary zone electrophoresis, chromatography, and electrochromatography indicates that electrochromatography in homogeneous gels might be the only chromatographic technique which can compete in performance with free electrophoresis. Using an equation, valid not only for electrophoresis, but also for chromatography and centrifugation, the mobility of a concentration boundary has been calculated for the first time and was, as expected, low. Equations based on the Kohlrausch regulating function do not permit such calculations. Another regulating function (the H function) and some of its characteristics are briefly discussed. The theoretical discussions in this paper and the experimental studies in Part II show that high-performance electrophoresis deserves its prefix when the runs are designed to give minimum zone broadening. Some guidelines are given to facilitate this optimization. The plate numbers are so high that the resolution cannot be increased by more than 30% even if they approach the theoretically maximum values.  相似文献   

2.
Tu C  Zhu L  Ang CH  Lee HK 《Electrophoresis》2003,24(12-13):2188-2192
Large-volume sample stacking (LVSS) is an effective on-capillary sample concentration method in capillary zone electrophoresis, which can be applied to the sample in a low-conductivity matrix. NaOH solution is commonly used to back-extract acidic compounds from organic solvent in sample pretreatment. The effect of NaOH as sample matrix on LVSS of haloacetic acids was investigated in this study. It was found that the presence of NaOH in sample did not compromise, but rather help the sample stacking performance if a low pH background electrolyte (BGE) was used. The sensitivity enhancement factor was higher than the case when sample was dissolved in pure water or diluted BGE. Compared with conventional injection (0.4% capillary volume), 97-120-fold sensitivity enhancement in terms of peak height was obtained without deterioration of separation with an injection amount equal to 20% of the capillary volume. This method was applied to determine haloacetic acids in tap water by combination with liquid-liquid extraction and back-extraction into NaOH solution. Limits of detection at sub-ppb levels were obtained for real samples with direct UV detection.  相似文献   

3.
Determination of impurities in ionic liquids (ILs) remains a difficult task. In this work, the hyphenation of isotachophoretic (ITP) preconcentration to zone electrophoresis (ZE) has been explored for the trace analysis of the cationic impurities Na(+), Li(+), and methylimidazolium (MI(+)) in butylmethylimidazolium (BMI(+))-based ILs. Simultaneous detection of UV-transparent and UV-absorbing impurities was ensured by a BGE composed of creatinine-acetate buffer. To induce ITP, three different strategies were evaluated: (i) Sample self-stacking ensured by the addition of ammonium acetate (NH(4)Ac) to 25-50-fold diluted IL solution (transient ITP). (ii) Complete ITP-ZE separation performed in a single capillary: ITP was realized in discontinuous electrolytes comprising an 80 mM NH(4)Ac, 40 mM acetic acid, 30 mM alpha-CD, pH 5.05, leading electrolyte (LE) and a 10 mM creatinine, 10 mM acetic acid, pH 4.9, terminating electrolyte (TE). To create the ZE stage, the ITP stack of analytes was moved back toward the capillary inlet by pressure and simultaneously the capillary was filled with the BGE. This protocol made it possible to accommodate a 2.5-times diluted IL sample. (iii) Complete counterflow ITP-ZE with continuous electrokinetic sample supply: the ITP stage was performed in a capillary filled with a 150 mM NH(4)Ac, 75 mM acetic acid, 30 mM alpha-CD, pH 5.0 LE, with 40-times diluted IL at the capillary inlet. BMI(+) from IL acts as the terminating ion. The LODs reached in this latter case were at the 10 and 1 ppb levels for MI(+) and Li(+) in diluted IL matrix, respectively.  相似文献   

4.
The use of quasi-isoelectric buffers consisting of narrow pH cuts of carrier ampholytes (NC) has been investigated to limit protein adsorption on capillary walls during capillary zone electrophoresis experiments. To quantify protein adsorption on the silica surface, a method derived from that of Towns and Regnier has been developed. alpha-Lactalbumin (14 kDa, pI 4.8) and alpha-chymotrypsinogen A (25 kDa, pI 9.2) have been used as model proteins. Acidic narrow pH cuts of carrier ampholytes (NC, pH 3.0) obtained from fractionation of Serva 4-9 carrier ampholytes were used as BGE in bare-silica capillaries, and allowed to decrease significantly protein adsorption, as compared to experiments performed with classical formate buffer. The use of NC as BGE appeared to be as efficient as the use of polydimethylacrylamide coating to prevent protein adsorption. This increase of protein recovery when using NC was attributed to the interaction of carrier ampholytes with the silica surface, leading to a shielding of the capillary wall.  相似文献   

5.
The present work is aimed at investigating the influence of the background electrolyte composition and concentration on the separation efficiency and resolution and mass spectrometric detection of illicit drugs in a capillary zone electrophoresis-electrospray ionization-time of flight mass spectrometry (CZE-ESI-TOF MS) system. The effect of phosphate, borate and Tris buffers on the separation and mass spectrometry response of a mixture of 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, methadone, cocaine, morphine, codeine and 6-monoacetylmorphine was studied, in comparison with a reference ammonium formate separation buffer. Inorganic non-volatile borate and Tris buffers proved hardly suitable for capillary electrophoresis-mass spectrometry (CE-MS) analysis, but quite unexpectedly ammonium phosphate buffers showed good separation and ionization performances for all the analytes tested. Applications of this method to real samples of hair from drug addicts are also provided.  相似文献   

6.
Pai YF  Lin CC  Liu CY 《Electrophoresis》2004,25(4-5):569-577
A wall-coated histidine capillary column was developed for the on-line preconcentration of nonsteroidal anti-inflammatory drugs (NSAIDs) in capillary electrochromatography (CEC). A wide variety of experimental parameters, such as the sample buffer, background electrolyte (BGE) composition, concentration, sample plug lengths, water plug, and the effect of organic modifiers were studied. The relationship between peak height and injection times for the NSAIDs by variation of sample and BGE buffer concentration was investigated. On addition of sodium chloride (0.3-0.6%) to the sample zone, the stacking efficiency was increased. With acetate buffer (100 mM, pH 5.0)/ethanol (20% v/v) as BGE and sample solution in acetate buffer (0.2 mM, pH 5.0)/ethanol (20% v/v)/NaCl (0.3% w/v), NSAIDs could be determined at low microM levels without sample matrix removal. The detection limit was 0.096 microM for indoprofen, 0.110 microM for ketoprofen, 0.012 microM for naproxen, 0.023 microM for ibuprofen, 0.110 microM for fenoprofen, 0.140 microM for flurbiprofen, and 0.120 microM for suprofen. The method could be successfully applied to the simultaneous determination of NSAIDs in urine. The recoveries were better than 82% for all the analytes. The present method enables simple manipulation with UV detection for the determination of NSAIDs at low concentration levels in complex matrix samples.  相似文献   

7.
Online sample concentration of acidic drugs by transient isotachophoresis (t-ITP) with the injection of a base is described in capillary zone electrophoresis (CZE). A positively coated capillary was conditioned with background electrolyte (ammonium acetate at pH 6). A long plug of sample solution (S) prepared in ammonium acetate was then hydrodynamically injected followed by the base (tetrapropylammonium hydroxide). A negative voltage was applied and caused the hydroxide ions from the base to penetrate the S zone and created a pH junction that swept through the S zone. The analytes stack at the junction where the mechanism of focusing was transient ITP with the acetate and hydroxide ions as leading and terminating ions, respectively. The concentrated analytes separated in co-EOF CZE once the hydroxide was exhausted. The base stacking strategy was tested using hypolipidemic, nonsteroidal anti-inflammatory, and diuretic drugs, and afforded 19-37 improvements in peak height.  相似文献   

8.
Zhou Q  Yau WP  Chan E 《Electrophoresis》2003,24(15):2617-2626
A capillary zone electrophoresis (CZE) method with direct ultraviolet (UV)-absorbance detection is presented for the simultaneous enantiomeric separation of warfarin and its main metabolites, including warfarin alcohols, 4'-, 6-, and 7-hydroxywarfarin, using highly sulfated beta-cyclodextrin (HS-beta-CD) as the chiral selector. This chiral separation method was optimized in terms of the electrophoretic parameters, which included the concentration of HS-beta-CD used, the type and composition of organic modifier added to the background electrolyte (BGE) buffer, and the BGE buffer pH. Chiral separation of warfarin and its major metabolites was achieved with high resolution, selectivity, efficiency, repeatability, and reproducibility. This optimized chiral analysis of warfarin along with its metabolites was completed within a satisfactory electrophoresis time of 20 min.  相似文献   

9.
A new high-performance capillary zone electrophoretic assay for creatine (Cr), creatinine (Cn), urea (U) and uric acid (Ua), markers of human diabetic nephropathy, both in plasma and urine has been developed with UV detection at 200 nm. The plasma sample was deproteinized with trichloroacetic acid and centrifuged at 10 000 rpm for 10 min. The urine sample was diluted 20-fold with buffer before analysis. The optimum separation conditions for the markers was investigated with respect to the concentration of the buffer, the pH, the voltage and the capillary temperature. Baseline separation was achieved in 25 mmol/L phosphate buffer (pH 3.45) using a 21 cm x 75 microm I.D. fused-silica capillary at 40 degrees C with an electric field of 1190 V/cm. The calibration curves showed good linearity in the range 3.5-1000, 0.18-700, 500-5000 and 2-800 microM (r2 min > 0.998) for Cr, Cn, U and Ua, respectively. The proposed method also has a high reproducibility (peak area RSD max < 3%) and has been successfully applied to the determination of clinical samples.  相似文献   

10.
Summary The capillary zone electrophoresis of two common nucleosides, adenosine and inosine, was investigated. Both compounds were resolved in a 0.1 M sodium phosphate buffer, pH 7.5. Contrary to expectations, adenosine behaved at this pH— 5 pH units lower than the literature pKa— as a negative ion, migrating behind mesityloxide (neutral marker) when working in normal polarity mode. To confirm the migration order, peaks were identified from absorption maxima, by high-speed scanning detector. The change in electrophoretic mobility with pH was investigated for the nucleosides, and 10 other background electrolytes were tried to match the separation capabilities of the sodium phosphate buffer. Most inorganic buffers showed comparable separation, while organic, Good-type buffers lacked selectivity.  相似文献   

11.
Phthalate buffers are currently used in capillary electrophoresis as robust electrolyte systems for indirect detection. This contribution demonstrates that these buffers show regularly not only successful regions of mobilities of analytes (sample window) but also regions of failure where the migration of analytes is strongly deteriorated due to the presence of a system zone. System zones in phthalate buffers may be easily detected by UV detection and manifest themselves as peaks or dips. Peak shape diagrams are advantageously used for the prediction of the migration behavior of system zones in phthalate background electrolyte (BGE) systems at various pH. It is shown that the mobility of the system zone varies strongly with pH, is practically zero at pH values below 4 and above 7, and shows a maximum at pH 5. Thus, the system peak may coincide either with the peaks of various analytes or with the electroosmotic flow (EOF) peak. Experiments are given showing the effects of such coincidences as, e.g., zigzag detection patterns, double EOF peaks, and/or unusually broad peaks/dips. The message of this contribution is to show how to understand the electrophoretic properties of phthalate BGEs that, regardless of possible failure regions, may be successfully used in the analytical practice of capillary zone electrophoresis (CZE).  相似文献   

12.
A fast, convenient and sensitive method of capillary zone electrophoresis (CZE) and indirect UV detection was proposed for the determination of 16 amino acids. p-Aminobenzoic acid (PAB) was selected as a background electrolyte (BGE). An isolated cell included a BGE buffer part and an electrode buffer one, which were jointed with a glass frit. The isolated cell can prevent PAB from the electrode reaction and improve the stability of the detection baseline. The separation conditions of amino acids were investigated, such as different BGEs, BGE concentration, buffer pH and electroosmotic flow (EOF) modifiers. Under the selected separation conditions, 14 amino acid peaks could be separated in 12 min. The detection limits of the amino acids were in the range of 1.7 - 4.5 micromol/L. The isolated cell is suitable for reagents reacting on the electrodes in capillary electrophoresis. The proposed method has been successfully applied to the determination of the amino acids in tobacco samples.  相似文献   

13.
The present study reports a novel method for the separation of the high-molecular-weight anionic polysaccharides, iota, kappa, and lambda carrageenans, in capillary electrophoresis (CE). Carrageenan samples are first derivatised with 9-aminopyrene-1,4,6-trisulfonic acid (APTS), separated in an ammonium acetate background electrolyte (BGE) and detected with laser-induced fluorescence (LIF). The effects of changes of instrumental parameters (temperature, injection mode, field strength) and the composition of the BGE (concentration and pH) are reported, and are explained in terms of the physical chemistry of the BGE and the biopolymers. Optimal separation conditions for kappa, iota, and lambda carrageenans, including an APTS internal standard, were found in a polyvinyl alcohol coated capillary with an ammonium acetate BGE of low concentration (25 mM) and moderate pH (8.0). This BGE gave the best reproducibility in tests on iota/kappa mixtures, with relative standard deviations (RSDs) in migration times and normalised peak areas (relative to the APTS internal standard) of less than 0.1% and 1%, respectively. Using this BGE at 50 degrees C and a voltage of 30 kV, all three carrageenan subtypes were separated in a run time of 3 min.  相似文献   

14.
In this study, the choice of electrolyte systems for the separation and detection of a range of chlorophenoxyacetic acids and chlorophenols by means of capillary zone electrophoresis (CZE) is discussed. A series of acetate buffers over the buffering capacity pH range 4.03-5.5 were initially chosen for the separation. It was found that chlorophenoxyacetic acids could be separated at pH 4.03 and 4.5 but the most satisfactory separation of chlorophenols was obtained at pH 5.5. The factors affecting separation selectivity, including the addition of organic modifiers, was also studied. The use of 25% 2-butanol, 5% ethylene glycol and 10% acetonitrile as organic solvents resulted in the total separation of both classes of these compounds but poor peak shape of chlorophenols resulted and a number of chlorophenoxyacetic acids were not well separated. A borate-phosphate buffer gave improved peak shape of chlorophenols. Further improved separation of the components of the mixture was obtained by the addition of 2 mM fully methylated-beta-cyclodextrin to the 35 mM borate- 60 mM phosphate buffer at pH 6.5, maintaining good peak shape. In this case, separation of the two compound classes, chlorophenoxyacetic acids and chlorophenols, is achieved, with complete resolution of individual compounds in less than 5 min with high efficiency (of the order of 150,000 plates for the ca. 40 cm column). The method is applied to a commercial 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide mixture.  相似文献   

15.
A rapid, accurate, precise, and optimized capillary zone electrophoresis assay was established and validated for the simultaneous quantification of metformin and vildagliptin in tablets. The electrophoretic separation was achieved on an untreated bonded silica capillary with a background electrolyte comprising 25 mM of borate buffer at pH 7.5 at 207 nm. The concentration of the buffer and the pH of BGE were optimized using the multivariate optimization method for determining the retention time and peak area. Furthermore, the sample injection time, capillary oven temperature, and applied voltage were optimized. The capillary zone electrophoresis technique was validated for all required parameters as per the International Conference on Harmonization recommendations. The linearity ranged in the concentrations of 5–500 µg/mL and 5–100 µg/mL with the limit of detections of 0.22 µg/mL and 0.40 µg/mL for metformin and vildagliptin, respectively. In addition, the percent relative standard error for repeatability and inter-day precision was within the acceptable range. The mean recoveries determined by the capillary zone electrophoresis method were 99.2% and 100.4% for metformin and vildagliptin, respectively. Finally, the capillary zone electrophoresis process was effectively used for the assays of metformin and vildagliptin in their solid dosage form, and statistical outcomes were in agreement with the outcomes of the previously validated RP-HPLC method.  相似文献   

16.
A simple and rapid method for the determination of berberine and strychnine in medicinal plants and herbal preparations for regulatory purposes using a home-made pressurized liquid extraction (PLE) system with capillary zone electrophoresis (CZE) using ultraviolet detection at 254 nm was developed. The effects of pH, concentration of buffer, and organic modifiers in the electrophoretic separation were investigated. The buffer used for CZE contained 50 mM ammonium acetate, pH 3.1. The effect of temperature on the extraction efficiency of strychnine in medicinal plants by PLE was demonstrated. Comparable or higher extraction efficiency was achieved with PLE for strychnine in medicinal plants and berberine in herbal preparations compared to soxhlet extraction. The effect of matrix interference in medicinal plants and herbal preparations containing a number of medicinal plants samples using CZE was investigated by standard additional experiments. The reproducibility of the method using PLE with CZE was found to vary between 2.4 and 10.7% (n = 5/6) for different types of samples on different days.  相似文献   

17.
A mixture of five tetracycline (TC) derivatives: minocycline (MC), demeclocycline (DMCTC), doxycycline (DC), and sancycline (SC), as well as each TC derivative from its main degradation product were separated by capillary zone electrophoresis (CZE). The influence of the pH and the concentration and nature of the background electrolyte (BGE) on the separations was investigated. Ethylenediaminetetraacetic acid (EDTA; 1 mM) was used as additive in a 25 mM phosphate buffer (pH 2.3) because this BGE enabled the rapid separation of the TC derivatives and of each TC derivative from its respective degradation product in less than 6 min. After optimization of the separation conditions, the analytical characteristics of the method were investigated. The parameters involved were linearity, precision (repeatability and reproducibility), and limits of detection (LODs). LODs obtained for the five TC derivatives studied were about 3 microg/mL. Finally, the CZE method developed was applied to study the stability of TC derivatives and to analyze the TC derivative content in three different pharmaceutical preparations.  相似文献   

18.
卤代乙酸及其结构相近化合物的高效毛细管电泳分离   总被引:2,自引:0,他引:2  
关福玉  吴惠芳  罗毅 《色谱》1996,14(2):134-136
氟、氯、溴等卤代乙酸是结构非常相近的离子型化合物,对它们的分离测定比较困难。用高效毛细管电泳法在碱性或酸性缓冲液条件下可将它们分离。在酸性缓冲液条件下,可提高有机酸分离的选择性。较低的操作电压有利于提高阴离子的分离度,而改变温度对分离度的影响不大。  相似文献   

19.
Immobilized pH gradients use a series of weak acrylamido acids and bases (Immobiline) to create a pH gradient along the separation axis. These buffers can be degraded in water by two mechanisms: (i) hydrolysis of the amido bond, with generation of free acrylic acid and either an amino acid or a diamine; (ii) autopolymerization to oligomers and/or n-mers. In order to check for these degradation products, different capillary zone electrophoresis systems for analysis of all Immobilines have been devised. The acidic compounds are resolved in 100 mM acetate, pH 4.0, whereas the alkaline Immobilines are separated in 50 mM phosphate buffer, pH 7.7 (or pH 7.2 for the weaker species). Polymers of alkaline Immobilines are resolved in 50 mM phosphate buffer, pH 2.5, in 1% Ficoll-400. All Immobilines are detected underivatized, by their adsorption at 214 or 254 nm. A calibration curve has been constructed for quantification of acrylic acid contamination. As little as 1 mol% of acrylic acid contamination in Immobiline solutions can be detected, with a sensitivity limit below 0.2 mM (at the injection port).  相似文献   

20.
A capillary zone electrophoresis method was developed for the separation and determination of strychnine and brucine in Strychnos nux-vomica L. and its preparation. The factors that could affect the separation were studied, such as the types and concentrations of electrolytes, pH, ionic strength and organic modifier. The optimum running buffer was 20 mmol/L of ammonium acetate containing 0.2 mol/L of glacial acetic acid (pH 3.64). The applied voltage was 25 kV and the wavelength of the UV detector was set at 214 nm. The established method with dopamine hydrochloride as internal standard was linear in the range of 5-100 microg/mL for both strychnine and brucine. The recovery was 102.96% for strychnine and 98.56% for brucine. The extracts of Strychnos nux-vomica and its preparation could be directly injected for analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号