首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大约0.3M的NH_4Al(SO_4)_2的重水溶液用作溶剂而令其活泼氢交换,结果水的横向弛豫时间T_2缩短,可用C.P.M.G.脉冲序列法消除水峰。以此为溶剂测定了葡萄糖的图谱,结果满意。  相似文献   

2.
研究了羰基和砜基共交联聚酰亚胺膜M1C和M2C的膜溶胀和质子传导的各向异性,以及在高温和低湿度条件下燃料电池的发电和耐久性能.研究结果表明,M1C和M2C膜厚方向溶胀比砜基交联质子交换膜(R1C)的小,且无显著的膜面方向尺寸变化.M1C和M2C的膜厚方向质子传导率明显大于R1C.温度、压力和相对湿度在很大程度上影响了燃料电池的性能.在相同条件下,M1C的燃料电池发电性能优于R1C.90℃时,较高的相对湿度(RH)82%下,M1C和R1C具有与Nafion相近的发电性能;随着相对湿度降低到27%,M1C的电池性能显著降低,但仍高于R1C.随着操作温度从90℃提高到110℃,所有质子交换膜的性能都大幅下降.在0.2 MPa及RH为49%时,M1C的最大输出功率比R1C高21%.当电池压力上升至0.3 MPa后,M1C的最大输出功率从0.2 MPa时的0.17 W/cm~2提高到0.38 W/cm~2.M1C在110℃下连续运行330 h后性能未见明显下降,说明羰基和砜基共交联的磺化聚酰亚胺质子交换膜具有良好的高温燃料电池耐久性能.  相似文献   

3.
燃料电池用磺化聚酰亚胺质子交换膜材料的制备与性质   总被引:2,自引:0,他引:2  
以联萘二酐、磺化二胺和含咪唑基团的非磺化二胺单体为原料,制备了一系列高相对分子质量的磺化聚酰亚胺,该类聚合物具有优异的溶解性和良好的成膜性.得到的质子交换膜具有优异的水解稳定性.苯并咪唑碱性基团的存在提高了磺化聚酰亚胺质子交换膜膜的溶胀稳定性和热稳定性、降低了膜的甲醇透过率.质子导电率测试结果表明,IEC值为2.55mequiv·g-1的膜室温条件下的质子导电率为0.121 S·cm-1,高于在相同测试条件下Nafion 117膜的质子导电率(0.09 S·cm-1).  相似文献   

4.
高温质子交换膜燃料电池所面临的一个主要技术障碍是高温低湿度环境下能够具有满足电池工作条件的膜的制备.本文通过所合成的2-取代咪唑衍生物与全氟磺酸树脂的掺杂,采用溶液重铸法制备了可以在高温无水条件下工作的质子交换膜.通过2-位疏水基团的接枝,实现了非水质子传导介质的咪唑环在膜内的固定,所制备的复合质子交换膜的导质子率在160℃无水条件下达到6.8×10^-3Scm^-1;而且相比全氟磺酸均质膜,其热稳定性也有所提高.采用静电力显微镜观察到了所制备的复合质子交换膜内相互连接的离子团簇的形成;结合其质子传导活化能,提出了所制备的复合质子交换膜在120℃以下质子传导以跳跃方式为主;在120℃以上,则以咪唑环的"钟摆"形式实现质子在膜内的传输.  相似文献   

5.
庄林 《电化学》2013,19(1):93-94
Interplay between Structure and Relaxations in Perfluorosulfonic Acid Proton Conducting Membranes G.A.Giffin,G.M.Haugen,S.J.Hamrock,V.D.NotoJ.Am.Chem.Soc.DOI:10.1021/ja3099799结合计算和多种实验手段讨论3M公司生产的质子交换膜(PEM)的结构-性质关系,讨论125oC下的质子传导行为.  相似文献   

6.
蒸汽失活裂化催化剂沸石活性组元的再活化研究   总被引:1,自引:1,他引:0  
研究了蒸汽失活的裂化催化剂的再活化过程.高温水蒸汽下失活的含Y型沸石的裂化催化剂在碱性水热条件下进行原位晶化处理并经过含铵离子的水溶液交换以恢复其裂化活性,在整个处理过程中保持催化剂的粒度不变.对含ZSM-5类沸石的失活裂化催化剂则采用含VA族元素的铵盐溶液处理,并在350℃~600℃的温度范围内进行焙烧来恢复其择形裂解活性.  相似文献   

7.
高温质子交换膜燃料电池(HT-PEMFC)具有高温下电极反应动力学快、催化剂抗毒化能力强及水热管理简单的优点,是当今燃料电池的重要研究领域之一.作为HT-PEMFC的关键部件,高温质子交换膜直接影响着燃料电池的输出性能和使用寿命.磷酸掺杂型高温质子交换膜因其高温低湿或无水条件下较高的质子电导率、良好的化学稳定性及热稳定性等而成为高温质子交换膜材料的研究热点.但是,在实际应用过程中,其面临质子电导率与力学性能难以协同兼顾以及磷酸流失等问题.结合本课题组及国内外的文献报道,本文综述了磷酸掺杂高温质子交换膜的研究现状、关键科学问题及解决策略,展望了HT-PEM的未来发展方向.  相似文献   

8.
质子交换膜是新型燃料电池的关键组件之一.以Nafion为代表的商用全氟磺酸质子交换膜成本较高、操作温度较低,限制了宽温度范围下的大规模应用.金属有机框架材料(Metal Organic Framework,MOFs)因其比表面积大、结构规整、可设计性强等优点,在质子交换领域备受关注.作者从三方面综述了MOFs质子导体的相关研究.第一部分主要介绍了MOFs传导质子的作用机理;第二部分从有水/无水条件下工作的两种不同MOFs出发综述了MOFs质子导体的相关发展;第三部分系统回顾了MOFs质子交换膜的相关研究,包括MOFs薄膜与MOFs混合基质膜结构.最后指出了MOFs质子导体及其质子交换膜研究中尚未解决的问题,并展望该领域的未来研究方向.  相似文献   

9.
以3,4-二氨基苯甲酸为单体合成了ab-聚苯并咪唑.研究了磷酸掺杂的该质子交换膜在80~200℃,不同湿度以及不同酸掺杂量下的质子电导率.该质子交换膜可作为燃料电池的膜电解质,在常压不增湿的条件下,可使电池运行温度达到200℃.  相似文献   

10.
采用密度泛函理论方法计算了聚对苯二甲酸乙二醇酯(PET)二聚体模化物的键离能,并设计PET热解的3条可能路径,分析PET热解机理.由于乙酸甲酯与PET具有相同的酯基官能团,因此以乙酸甲酯为简单模型参照物,采用M06-2X,B3P86,B3LYP以及BHandHLYP方法分别在基组LanL2DZ,6-31G(d),3-21G和6-31++G(d,p)水平下对乙酸甲酯的键离能进行计算.通过计算可知,B3P86与M06-2X方法的计算结果与iBonD数据库的乙酸甲酯实验测定值最接近.因此本研究采用B3P86与M06-2X方法对PET的键离能进行计算.计算结果表明:PET的各键中C—C(aromatic)键的键离能最大,主链上的C—C键离能最小,其次是C—O键.在PET的可能热解路径中,PET可能主要通过主链进行协同反应,生成苯甲酸、对苯二甲酸等有机酸以及CH_3CHO和CO_2等气体产物.  相似文献   

11.
针对氢燃料电池对宽温域质子交换膜材料的迫切应用需求,合成了新型含Tr?ger’s base (TB)结构的聚苯并咪唑(TB-PBI-N),并以之为填料与含TB基聚酰亚胺(PI-TB-N)共混,制备了5种不同比例的磷酸掺杂复合质子交换膜.通过傅里叶红外光谱(FTIR)、核磁氢谱(1H-NMR)、热失重分析(TGA)和拉伸试验等表征了质子交换膜的结构、机械性能、热及氧化稳定性、酸吸收、溶胀度、质子电导率(σ)及氢/空燃料单电池的功率密度(PD),探究了TB-PBI-N填料的添加对复合膜性能的影响.结果表明:磷酸掺杂前复合膜的拉伸强度为87.3~129.5 MPa,掺杂后膜的拉伸强度为3.7~9.5 MPa,磷酸吸收率为235.3%~288.7%,溶胀率为13.9%~25.0%,可在30~160℃传导质子,σ和PD最高分别可达94.3 mS/cm和334.6 mW/cm2. TBPBI-N填料的添加改善了复合膜的机械性能及磷酸掺杂膜的尺寸稳定性.另外,填料TB-PBI-N的TB结构具有额外的碱基位点,可提供一定的酸吸附能力,从而提升了σ.其中,复合...  相似文献   

12.
G-四链体传输空穴的特殊性质使其有望应用于发展分子电子器件.由于鸟嘌呤自由基阳离子(G·+)脱质子反应会中断空穴传递,影响传递效率,我们对G-四链体AG3(T2AG33中G·+脱质子过程展开了理论与实验的研究.根据瞬态紫外可见吸收光谱,确定了脱质子产物是G(N(2)-H)·;通过测量不同温度下G·+脱N(2)-H质子的速率常数,得到脱质子活化能为20.0±1.0 kJ/mol.进而,采用显性水和连续溶剂化模型相结合的方法模拟G-四链体中G·+脱质子环境,在M062X/6-31G(d)水平上得到了脱质子势垒(26.4 kJ/mol).结合实验值,理论计算的势能面描述了G-四链体中G·+脱N2-H的过程.这些结果为G-四链体在电子器件方面的应用提供了重要依据和指导.  相似文献   

13.
利用循环伏安法研究了玻璃微米/纳米管支持的水/1,2-二氯乙烷(DCE)界面上邻菲咯啉加速质子的转移过程.将装有水溶液的微米/纳米管插入到DCE溶液中,可以形成微米/纳米级-液/液界面,在选定的实验条件下,其作用类似于微米/纳米电极.用微米管考察了此加速转移过程的半波电位与pH值(1.1~7.5)的关系,利用Matsuda等提出的理论公式计算了邻菲咯啉与质子在有机相和水相中的络合常数比.并用纳米管计算得到邻菲咯啉加速质子在水/DCE界面转移过程中的标准速率常数(k0)和转移系数(α)分别为(0.183±0.054)cm/s和0.70±0.0.  相似文献   

14.
通过质子的自旋-晶格驰豫时间(T_1)、自旋-自旋驰豫时间(T_2)研究烷基 巯基[X(CH_2)_nS-]单分子层保护的纳米金粒中配体分子的运动。本研究涉及两种 典型配体:CH_3(CH_2)_7SH和Py(CH_2)_(12)SH及该两配体的不同配比的测合配体 。实验监测了配体中不同位置的质子的NMR驰豫时间随空间距离及配体比例改变的 变化情况。不同位置的质子,因主要影响因素的不同,表现出各自特殊的运动特征 。配体与金粒配位后,2,3位T_1,T_2值减少,1,4位T_1,T_2值增加。混合配体 中Py(CH_2)_(12)SH含量增加,1,2,3位T_1,T_2值都会减小;而4位T_1值减小, T_2值却增加;不同位置T_1,T_2值变化快慢有别。2位因其特殊位置,在配体配比 PY:C_8 = 1:1[PY代表Py(CH_2)_(12)SH,C_8代表CH_3(CH_2)_7SH]时,分子运动最 自由。实验结果显示T_1总是大于T_2,这说明配体处于低频运动区。  相似文献   

15.
应用ABEEMσπ极化力场,对Zn2+水溶液体系进行分子动力学模拟,探讨Zn2+的配位微结构和配体水交换反应。水分子模型采用ABEEM-7P精细水模型。模拟后对体系结构、电荷及动力学性质进行细致分析。结构分析表明,平衡体系中Zn2+的第一层配位数为6,这与实验值是一致的。水交换反应过程中,溶剂水由O-Zn-O角分线斜上(下)方进攻Zn2+,配位水由O-Zn-O角分线斜下(上)方逐渐远离。极化力场模拟时Zn2+与交换水间的距离变化波动较大,而固定电荷力场的波动较小。模拟发现,极化力场的径向分布函数能精细地展示第二、三层配体的配位微结构,第二配位层存在靠近Zn2+的亚壳层,能与第一水合层发生水交换反应,充分体现了Zn2+的极化效应。本文阐明了水交换反应中,Zn2+位点电荷与交换水中氧原子孤对电子位点电荷的规律性变化,从电荷的角度解释了水交换反应的合理性。ABEEMσπ极化力场模拟Zn2+水溶液获得第一水合层的平均配位驻留时间为2.0×10-9 s,在实验值范围内,说明ABEEMσπ极化力场可以合理地模拟Zn2+水溶液体系。  相似文献   

16.
周剑章 《电化学》2005,11(4):459-463
能量存储与转移质子交换膜电极的制备:溶剂组分和挥发速率对催化剂层微结构的影响,Ferre ira-Aparic io,P.and Daza,L.,Fernández,R Journal of Power Sources,2005,Vol 151,18-24固态氧化物燃料电池铈-铽氧化物作阳极材料,M artínez-Arias,A.,Hungraí,A.B.,Fernández-Garcaí,M.,et.al,Journal of Power Sources,2005,Vol 151,43-51溶剂和酸化方法对质子交换膜燃料电池磺化共聚酰亚胺膜性能的影响,B lázquez,J.A lberto,Iru in,Juan J.,Eceolaza,et.al,Journal of Power Sources,2005,Vol 151,63-68CO存在下的质子交换…  相似文献   

17.
通过12个含钕体系的振子强度(P)与Judd-Ofelt强度参数(T_2、T_4、T_6)的测量与计算,表明了~4I_(9/2)→2s 1L_J的各吸收谱线的振子强度P与强度参数的总和∑T_λ存在直线的关系:P=a∑T_λ b。根据实验测得的P值,利用此关系式可计算出∑T_λ,与从Judd-Ofelt理论所计算的∑T_λ值符合得较好。  相似文献   

18.
在非水质子溶剂和有机.水溶液中有机酸的酸碱平衡常数测定精度与质子浓度的测定精度密切相关。溶液中质子活度可以用水标准溶液标定的玻璃电极用电位法来测定。测得的以水为标准的质子活度pHm,可用-log[H2S^+]=pHm-(-logγ-D)来转换成质子的浓度,(-logγ-D)是一个与该溶剂有关的常数。用非线性回归法对有机酸的质子交换数与质子溶度关系模拟可以进一步提高有机酸酸度测定的精度。  相似文献   

19.
自交联聚乙烯亚胺-聚砜高温质子交换膜研究   总被引:1,自引:0,他引:1  
为了制备出兼具高电导率和优异力学性能的高温质子交换膜,本工作采用化学自交联的方法将含氮功能基团聚乙烯亚胺(PEI,平均分子量200)接枝到氯甲基化聚砜(CMPSF)高分子链上制备磷酸掺杂型高温质子交换膜的基膜(PEI-PSF).其中,PEI上的含氮功能基团既作为磷酸吸附位点,使高温质子交换膜获得高的质子传导率,同时又作为交联位点与CMPSF高分子链上的苄氯基团发生自交联反应,使聚合物膜具有优良的力学性能.傅里叶变换红外光谱和X-射线光电子能谱测试结果表明,CMPSF高分子链上的苄氯基团与PEI上的含氮功能基团发生完全反应,且随着聚砜氯甲基化程度的增加,膜中引入的PEI含量相应增加,进而提升了PEI-PSF膜的磷酸掺杂水平.氯甲基化程度为58%的PEI-PSF膜(PEI-PSF-58)磷酸吸附量达到122 wt%,在180℃无水条件下质子电导率达到3.4×10-2 S·cm-1,同时该复合膜拉伸强度达到30 MPa.基于磷酸掺杂的PEI-PSF-58复合膜的高温质子交换膜燃料电池在150℃干气条件下的输出峰功率达到200 mW·cm-2,并且在78 h的测试时间内展示出了良好的稳定性.  相似文献   

20.
本文以一种具有含萘结构的磺酸化聚芳醚酮作为主体材料, 采用具有相似化学结构的含萘、 醚和酮结构的聚甲亚胺作为增强组分, 通过溶胶-凝胶的方法在复合膜中引入提高质子传输能力的酸功能化聚倍半硅氧烷(POSS-SO3H), 制备新型的三元复合型质子交换膜, 并对其微结构和性能进行了研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号