首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + 1·Na+ (org) $ \Leftrightarrow $ 1·M+ (org) + Na+ (aq) taking place in the two-phase water–phenyltrifluoromethyl sulfone (abbrev. FS 13) system (M+ = Li+, H3O+, NH4 +, Ag+, Tl+, K+, Rb+, Cs+; 1 = benzo-18-crown-6; aq = aqueous phase, org = FS 13 phase) were evaluated. Further, the stability constants of the 1·M+ complexes in FS 13 saturated with water were calculated; they were found to increase in the series of $ {\text{Cs}}^{ + } \, < \,{\text{Rb}}^{ + } \, < \,{\text{H}}_{ 3} {\text{O}}^{ + } \, < \,{\text{Ag}}^{ + } \, < \,{\text{Li}}^{ + } \, < \,{\text{NH}}_{4}^{ + } \, < \,{\text{K}}^{ + } \, < \,{\text{Tl}}^{ + } $ .  相似文献   

2.
From extraction experiments and $ \gamma $ -activity measurements, the exchange extraction constant corresponding to the equilibrium Tl+ (aq) + 1·Cs+ (org) ? 1·Tl+ (org) + Cs+ (aq) taking place in the two-phase water–phenyltrifluoromethyl sulfone (abbrev. FS 13) system (1 = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, org = FS 13 phase) was evaluated as log K ex (Tl+, 1·Cs+) = 1.7 ± 0.1. Further, the extraordinarily high stability constant of the 1·Tl+ complex in FS 13 saturated with water was calculated for a temperature of 25 °C: log β org(1·Tl+) = 13.1 ± 0.2. Finally, by using quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Tl+ was derived. In the resulting 1·Tl+ complex, the “central” cation Tl+ is bound by eight bond interactions to six oxygen atoms from the respective 18-crown-6 moiety and to two carbons of the corresponding two benzene rings of the parent receptor 1 via cation–π interaction.  相似文献   

3.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Cs+(aq) + 1·Na + (nb) = 1·Cs+(nb) + Na+(aq) taking place in the two-phase water-nitrobenzene system (1 = lithium ionophore VIII; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (Cs+, 1·Na+) = ?0.5 ± 0.1. Further, the stability constant of the 1·Cs+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (1·Cs+) = 4.8 ± 0.2. Finally, by using quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Cs+ was derived. In the resulting complex, the “central” cation Cs+ is bound by six bond interactions to the corresponding six oxygen atoms of the parent ligand 1.  相似文献   

4.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Cs+(aq) + A?(aq) + 1(nb) ? 1·Cs+(nb) + A?(nb) taking place in the two-phase water–nitrobenzene system (A? = picrate, 1 = nonactin; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (1·Cs+,A?) = 2.8 ± 0.1. Further, the stability constant of the 1·Cs+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (1·Cs+) = 4.7 ± 0.1. Finally, by using quantum–mechanical DFT calculations, the most probable structure of the resulting cationic complex species 1·Cs+ was derived.  相似文献   

5.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq) + 1·Cs+(nb) ? M+(nb) + Cs+(aq) taking place in the two-phase water–nitrobenzene system (M+ = Li+, Na+, H+, NH4 +, Ag+, K+, Rb+, Tl+; 1 = dibenzo-30-crown-10; aq = aqueous phase, nb = nitrobenzene phase) were determined. Furthermore, the stability constants of the 1·M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of Cs+ < H+, Ag+ < NH4 + < Na+ < Rb+ < Li+ < K+, Tl+.  相似文献   

6.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Cs+(aq) + I?(aq) + 1(nb) ? Cs+(nb) + I?(nb) taking place in the two–phase water–nitrobenzene system (1 = 1,3-alternate-25,27-bis(1-octyloxy)calix[4]arene-crown-6; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (Cs+, I?) = 2.9 ± 0.1. Further, the stability constant of the Cs+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (Cs+) = 8.8 ± 0.1. Finally, by using quantum–mechanical DFT calculations, the most probable structure of the resulting cationic complex species Cs+ was derived.  相似文献   

7.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + Cs+ (nb) ? M+ (nb) + Cs+ (aq) taking place in the two-phase water–nitrobenzene system (M+ = Ag+, K+, Rb+, Tl+; 1 = 1,3-alternate-25,27-bis(1-octyloxy)calix[4]arene-crown-6; aq is aqueous phase, nb is nitrobenzene phase) were determined. Moreover, the stability constants of the M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of K+ < Rb+ < Ag+ < Tl+.  相似文献   

8.
The exchange extraction constants corresponding to the general equilibrium C+(aq) + Cs+(nb) ? C+ (nb) + Cs+(aq) occurring in the two-phase water–nitrobenzene system (C+ = protonated α-amino acid methyl ester, 1 = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were evaluated on the basis of extraction experiments and γ-activity measurements. Further, the stability constants of the C+ cationic complex species in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: protonated l-tryptophan methyl ester < protonated l-phenylalanine methyl ester < protonated l-leucine methyl ester < protonated l-methionine methyl ester < protonated l-valine methyl ester.  相似文献   

9.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium C+(aq) + Cs+(nb) ?C+ (nb) + Cs+(aq) taking place in the two–phase water–nitrobenzene system (C+ = methylammonium, ethylammonium, propylammonium, ethanolammonium, diethanolammonium, triethanolammonium, protonated tyramine, protonated dopamine, protonated DL–noradrenaline; 1 = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the C+ complex species in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: protonated tyramine < protonated dopamine < triethanolammonium < diethanolammonium < protonated DL-noradrenaline < propylammonium < ethanolammonium < ethylammonium < methylammonium.  相似文献   

10.
From extraction experiments and γ-activity measurements, the exchange extraction constant corresponding to the equilibrium Ca2+(aq) + 1·Sr2+(nb) ? 1·Ca2+(nb) + Sr2+(aq) taking place in the two-phase water–nitrobenzene system (1 = beauvericin; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex(Ca2+, 1·Sr2+) = 1.1 ± 0.1. Further, the stability constant of the 1·Ca2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb(1·Ca2+) = 10.1 ± 0.2. Finally, by using quantum mechanical density functional level of theory calculations, the most probable structures of the non-hydrated 1·Ca2+ and hydrated 1·Ca2+·H2O complex species were predicted.  相似文献   

11.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Sr2+(aq) + 2A?(aq) +1(nb) ? 1·Sr2+(nb) + 2A?(nb) taking place in the two-phase water–nitrobenzene system (A? = picrate, 1 = beauvericin; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex(1·Sr2+,2A?) = ?0.6 ± 0.1. Further, the stability constant of the 1·Sr2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb(1·Sr2+) = 8.5 ± 0.1. Finally, by using quantum-mechanical DFT calculations, the most probable structure of the resulting cationic complex 1·Sr2+ was derived.  相似文献   

12.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium C+(aq) + 1·Na+(nb) ? 1·C+(nb) + Na+(aq) taking place in the two-phase water–nitrobenzene system (C+ = univalent organic cation, 1 = benzo-18-crown-6; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the 1·C+ complex species in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: protonated tyramine, protonated l-valine methyl ester < protonated dopamine < protonated serotonin < methylammonium < protonated hexamethylenetetramine < ethanolammonium < protonated dl-noradrenaline.  相似文献   

13.
From extraction experiments and γ-activity measurements, the exchange extraction constant corresponding to the equilibrium Ba2+(aq) + Sr2+(nb) ?1·Ba2+(nb) + Sr2+(aq) taking place in the two-phase water–nitrobenzene system (1 = beauvericin; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (Ba2+, Sr2+) = 1.2 ± 0.1. Further, the stability constant of the beauvericin–barium complex (abbrev. Ba2+) in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (Ba2+) = 9.5 ± 0.2. Finally, by using quantum mechanical DFT calculations, the most probable structure of the Ba2+ complex species was predicted.  相似文献   

14.
By using extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Sr2+(aq) + 2A?(aq) + 1(nb) ? 1·Sr2+(nb) + 2A?(nb) occurring in the two-phase water–nitrobenzene system (A? = picrate, 1 = antamanide; aq = aqueous phase, nb = nitrobenzene phase) was determined as log K ex (1·Sr2+, 2A?) = ?0.3 ± 0.1. Further, the stability constant of the 1·Sr2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (1·Sr2+) = 8.8 ± 0.1. Finally, applying quantum mechanical density functional level of theory calculations, the most probable structure of the cationic complex species 1·Sr2+ was derived. In the resulting complex, the “central” cation Sr2+ is bound by six bond interactions to the corresponding six oxygen atoms of the parent ligand 1. The interaction energy of the considered 1·Sr2+ complex was found to be ?1,114.9 kJ/mol, confirming the formation of this cationic species as well.  相似文献   

15.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)?+?1·Cs+(nb) ? 1·M+(nb)?+?Cs+(aq) taking place in the two-phase water–nitrobenzene system (M+?=?Li+, Na+, K+, Rb+, H3O+, NH4 +, Tl+; 1?=?beauvericin; aq?=?aqueous phase, nb?=?nitrobenzene phase) were determined. Moreover, the stability constants of the 1·M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of Rb+?<?Na+, H3O+?<?Tl+?<?NH 4 +? <?K+?<?Li+.  相似文献   

16.
From extraction experiments and $ \gamma $ -activity measurements, the extraction constants corresponding to the general equilibrium Eu3+(aq) + 3 A?(aq) + L(nb) $ \Leftrightarrow $ EuL3+(nb) + 3A?(nb) taking place in the two-phase water–nitrobenzene system ( $ {\text{A}}^{ - } = {\text{CF}}_{ 3} {\text{SO}}_{3}^{ - } $ ; L = electroneutral receptors denoted by 1, 2, and 3 – see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Further, the stability constants of the EuL3+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the series of 3 < 2 < 1.
Scheme 1
Structural formulas of N,N,N′,N′,N″,N″-hexacyclohexyl-4,4′,4″-propylidynetris(3-oxabutyramide) (1), bis[(12-crown-4)methyl] dodecylmethylmalonate (2), and bis[(benzo-15-crown-5)-4′-ylmethyl] pimelate (3)  相似文献   

17.
Complexation of alkali metal cations with 5,11,17,23-tetra-tert-butyl-26,28,25,27-tetrakis(O-methyl-D-α-phenylglycylcarbonylmethoxy)calix[4]arene (L) was studied by means of spectrophotometric, conductometric and potentiometric titrations at 25 °C. The solvent effect on the binding ability of L was examined by using two solvents with different affinities for hydrogen bonding, viz. methanol and acetonitrile. Despite the presence of intramolecular NH···O=C hydrogen bonds in L, which need to be disrupted to allow metal ion binding, this calix[4]arene amino acid derivative was shown to be an efficient binder for smaller Li+ and Na+ cations in acetonitrile (lg K LiL  > 5, lg K NaL  = 7.66), moderately efficient for K+ (lg K KL  = 4.62), whereas larger Rb+ and Cs+ did not fit in its hydrophilic cavity. The complex stabilities in methanol were significantly lower (lg K NaL  =  4.45, lg K KL  = 2.48). That could be explained by different solvation of the cations and by competition between the cations and methanol molecules (via hydrogen bonds) for amide carbonyl oxygens. The influence of cation solvation on complex stability was most pronounced in the case of Li+ for which, contrary to the quite stable LiL + complex in acetonitrile, no complexation was observed in methanol under the conditions used.  相似文献   

18.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + CsL+ (nb) ? ML+ (nb) + Cs+ (aq) taking place in the two–phase water–nitrobenzene system (M+ = K+, Rb+, $ {\text{NH}}_{4}^{ + } $ , Ag+, Tl+; L = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: $ {\text{NH}}_{4}^{ + } $  < K+ < Ag+ < Rb+ < Tl+.  相似文献   

19.
From extraction experiments and $ \gamma $ -activity measurements, the exchange extraction constants corresponding to the general equilibrium M2+(aq) + Sr2+(nb) $ \Leftrightarrow $ M2+(nb) + Sr2+(aq) taking place in the two-phase water–nitrobenzene system (M2+ = Mg2+, Ca2+, Ba2+, Pb2+, Cu2+, Zn2+, Cd2+, $ {\hbox{UO}}_{2}^{2 + } $ , Mn2+, Co2+, Ni2+; 1 = macrocyclic lactam receptor–see Scheme 1; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the M2+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: Mg2+ < Co2+ < Cu2+, Mn2+, Ni2+ < Cd2+ < Ca2+ < Ba2+, Zn2+ < Pb2+ <  $ {\hbox{UO}}_{2}^{2 + } $ .
Scheme 1
Structural formula of 2,18-dichloro-9,10,11,12-tetrahydro-6H, 20H-dibenzo[l,o][1,11,4,8]dioxadiazacyclohexadecine-7,13(8H, 14H)-dione (abbrev. 1)  相似文献   

20.
A number of p-tert-butylcalix[4]arene thioamides were synthesized and characterized by 1H-NMR and elemental analysis. Compounds 15 are O-substituted derivatives with –CH2–C(=S)–N–X groups, where NX = morpholidyl, NEt2, NHC2H4Ph, NHCH2Ph and NHEt, respectively. The X-ray structures of the ligands 1, 3, 5 and of the complex 3·Pb(ClO4)2, (compound 6), are presented and their slightly distorted cone conformation is established. The influence of the nature of the thioamide functions (secondary or tertiary) on the extractability of some selected metal cations was investigated. Whereas all these calixarenes show the highest extraction level for Ag+, tertiary thioamides are more efficient extractants for Pb2+ than secondary thioamides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号