首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrophilic matrix tablets with controlled drug release have been used extensively as one of the most successful oral drug delivery systems for optimizing therapeutic efficacy. In this work, magnetic resonance imaging (MRI) is used to study the influence of various pHs and mechanical stresses caused by medium flow (at rest, 80, or 150 mL/min) on swelling and on pentoxifylline release from xanthan (Xan) tablets. Moreover, a bimodal MRI system with simultaneous release testing enables measurements of hydrogel thickness and drug release, both under the same experimental conditions and at the same time. The results show that in water, the hydrogel structure is weaker and less resistant to erosion than the Xan structure in the acid medium. Different hydrogel structures affect drug release with erosion controlled release in water and diffusion controlled release in the acid medium. Mechanical stress simulating gastrointestinal contraction has no effect on the hard hydrogel in the acid medium where the release is independent of the tested stress, while it affects the release from the weak hydrogel in water with faster release under high stress. Our findings suggest that simultaneous MR imaging and drug release from matrix tablets together provide a valuable prognostic tool for prolonged drug delivery design.  相似文献   

2.
Supramolecular hydrogels (SMGel) have attracted much attention as a drug and gene delivery system in recent years. In this study, SMGels based on the tri-block copolymer of poly-ε-caprolactone–polyethylene glycol–poly-ε-caprolactone (PCL–PEG–PCL) and α-cyclodextrin (α-CD) were prepared and evaluated for the delivery of two model drugs, naltrexone hydrochloride and vitamin B12. Tri-block copolymers were synthesized easily in 15 min by ring-opening polymerization using the microwave irradiation technique, and their structures were determined by gel permeation chromatography and nuclear magnetic resonance methods. SMGels composed of various concentrations of the copolymer and α-CD were prepared and characterized for their rheological behaviour, their gel formation time and in vitro drug release profile. The results indicated that copolymers with a PCL to PEG ratio of 1:4 are suitable for SMGel preparation. The most viscose system with good syringeability was prepared by mixing 12 % wt α-CD and 10 % wt of copolymer. The gelation was found to occur within a minute after mixing. The viscosity of the hydrogel systems was determined as a function of shear rate. Finally, in vitro B12 release through the hydrogel systems was studied. Up to 80 % of Vitamin B12 was released through this system during a period of 20 days. Rheological evaluation revealed that the hydrogel has shear thinning properties, and the system regained its ground rheological state in a time dependent manner. Polymer concentration did not affect the drug release profiles. Finally, it was concluded that such systems are appropriate drug delivery systems due to their ability to provide a controlled drug release profile and their shear thinning thixotropic behaviour, which makes them syringeable and injectable.  相似文献   

3.
生物材料是推动生物医学领域日新月异变化的基石,医用水凝胶作为重要成员,近年来表现出蓬勃发展的态势。文章介绍了一种新型可注射的、以生物相容性方法交联的聚谷氨酸(Poly (γ-glutamic acid), PGA)/透明质酸(Hyaluronic acid, HA)复合水凝胶。研究首先采用EDC/NHS方法合成了酪胺(Tyramine,Ty)接枝聚谷氨酸的PGA-Ty前体大分子及半胱胺(Cysteamine, CA)修饰透明质酸的HA-CA前体大分子。两种前体大分子的结构分别使用核磁和红外进行了确证。得到的两种前体大分子在低浓度双氧水和辣根过氧化物酶(Horseradish Peroxidase, HRP)的共同作用下,于水相中交联得到互穿网络(Interpenetrating Network, IPN)水凝胶。实验对IPN水凝胶样品的系列性能,如平衡含水量、内部形貌、酶降解速率以及力学性能等进行了测试,并选取了盐酸四环素为药物模型对凝胶的体外药物释放行为、体外抗菌效果进行了测评。凝胶材料的细胞毒性及凝胶支架对细胞3D培养的效果证明其生物相容性优异,体外包埋的细胞经72h培养,未表现出明显细胞毒性。系列数据证明,该种水凝胶可以设计成为pH敏感型的药物控释载体材料,并因其良好的生物相容性,也有作为细胞支架、创伤辅料等其它生物医用材料的潜力。  相似文献   

4.
Because of the growing importance of pH‐sensitive hydrogels as drug delivery systems, biocompatible copolymeric hydrogels based N‐vinyl‐2‐pyrrolidinone (NVP) and methacrylic acid (MAA) were designed and synthesized. These hydrogels were investigated for oral drug delivery. Radical copolymerizations of N‐vinyl‐2‐pyrrolidinone (NVP) and methacrylic acid (MAA) with the various ratios of cross‐linking agent were carried out at 70 °C. Azabisisobutyronitrile (AIBN) was the free‐radical initiator employed and Cubane‐1,4‐dicarboxylic acid (CDA) linked to two 2‐hydroxyethyl methacrylate (HEMA) group was the crosslinking agent (CA) used for hydrogel preparations. The hydrogels were characterized by differential scanning calorimetry and FT‐IR. Equilibrium swelling studies were carried out in enzyme‐free simulated gastric and intestinal fluids (SGF and SIF, respectively). A model drug, olsalazine [3,3′‐azobis (6‐hydroxy benzoic acid)] (OSZ) as an azo derivative of 5‐aminosalicylic acid (5‐ASA), was entrapped in these gels and the in‐vitro release profiles were established separately in both enzyme‐free SGF and SIF. The drug‐release profiles indicated that the amount of drug released depended on the degree of swelling. The swelling was modulated by the amount of crosslinking of the polymer bonded drug (PBDs) prepared. Based on the great difference in hydrolysis rates at pH 1 and 7.4, these pH‐sensitive hydrogels appear to be good candidates for colon‐specific drug delivery.  相似文献   

5.
The aim of this work is to develop a novel biocompatible drug delivery carrier and tissue engineering scaffold with the ability of controlled drug release and also tissue regeneration. We have synthesized N-(2-hydroxypropyl)methacrylamide and 2-(dimethylamino)ethyl methacrylate copolymer-based hydrogels loaded with doxorubicin and tested in vitro. The manifestation of temperature sensitivity is noted with a sharp decrease or increase in hydrogel optical transparency that happens with the temperature exceeding a critical transition value. The drug release profile exhibited pH-sensitive behavior of the hydrogel. The hydrolytic degradation of gel and in vitro studies of polymer–doxorubicin conjugate and doxorubicin release from hydrogel matrix indicated that hydrogels were stable under acidic conditions (in buffers at pH 4.64 and 6.65). In both drug forms, polymer–doxorubicin conjugate and free doxorubicin could be released from the hydrogel scaffold at a rate depending directly on either the rate of drug diffusion from the hydrogel or rate of hydrogel degradation or at rate controlled by a combination of the both processes. In vitro analysis showed homogenous cell attachment and proliferation on synthesized hydrogel matrix. In vivo implantation demonstrated integration of the gel with the surrounding tissue of mice within 2 weeks and prominent neo-angiogenesis observed in the following weeks. This multifunctional hydrogels can easily overcome biological hurdles in the in vivo conditions where the pH range changes drastically and could attain higher site-specific drug delivery improving the efficacy of the treatment in various therapeutical applications, especially in cancer therapy, and could also be used as tissue engineering scaffold due to its porous interconnected and biocompatible behavior.  相似文献   

6.
合成聚(丙烯酸)/聚(N 异丙基丙烯酰胺)互穿聚合物网络(PAAc/PNIPAIPN)水凝胶,具有温度及pH双重敏感特性.这种水凝胶在弱碱性条件下的溶胀率远大于酸性条件下的溶胀率.在酸性条件下,随着温度上升,凝胶的溶胀率也随之逐渐上升;而在弱碱性条件下,温度低于聚(N 异丙基丙烯酰胺)(PNIPA)的较低临界溶解温度(LCST)时,溶胀率也随着温度的上升而上升,当温度达到LCST时,凝胶的溶胀率突然急剧下降,并随着温度的逐渐上升而下降.  相似文献   

7.
In the present research, a type of imprinted hydrogels, in which 5-fluorouracil is complexed non-covalently to the monomers and cross-linked into the hydrogel matrix, is synthesized in order to evaluate the possibility of their applications in sustaining the release of 5-fluorouracil due to the drug’s heightened interactions with the imprinted binding sites. Because of the hydrophility, hydrogels can absorb large amounts of water. As a result, drug release mechanisms are different from hydrophobic polymers. Mathematical model has been established to predict the drug release from the hydrogel matrix as a function of time. The drug release mechanism when immersed in release medium is discussed based on mathematical analysis. Swelling studies are performed and the capability of the hydrogels to reload 5-fluorouracil in aqueous solutions is evaluated. In vitro release studies after reloading are conducted. Mathematical analysis suggest that drug release kinetics from the hydrogels fit Fickian mechanism, further evaluation of the fitness for different hydrogel types reveal that the conformation of binding sites can play a very important role in deciding the kind of drug release mechanism. Experiments reveal that all hydrogels show swelling property. The imprinted hydrogels bind much more 5-fluorouracil than non-imprinted ones, and they sustain 5-fluorouracil release better than non-imprinted hydrogels. This research indicates that the imprinted hydrogels would be a potential promising device for drug delivery.  相似文献   

8.
In this study, thermoresponsive copolymers that are fully injectable, biocompatible, and biodegradable and are synthesized via graft copolymerization of poly(N‐isopropylacrylamide) onto alginate using a free‐radical reaction are presented. This new synthesis method does not involve multisteps or associated toxicity issues, and has the potential to reduce scale‐up difficulties. Chemical and physical analyses verify the resultant graft copolymer structure. The lower critical solution temperature, which is a characteristic of sol–gel transition, is observed at 32 °C. The degradation properties indicate suitable degradation kinetics for drug delivery and bone tissue engineering applications. The synthesized P(Alg‐g‐NIPAAm) hydrogel is noncytotoxic with both human osteosarcoma (MG63) cells and porcine bone marrow derived mesenchymal stem cells (pBMSCs). pBMSCs encapsulated in the P(Alg‐g‐NIPAAm) hydrogel remain viable, show uniform distribution within the injected hydrogel, and undergo osteogenic and chondrogenic differentiation under appropriate culture conditions. Furthermore, for the first time, this work will explore the influence of alginate viscosity on the viscoelastic properties of the resulting copolymer hydrogels, which influences the rate of medical device formation and subsequent drug release. Together the results of this study indicate that the newly synthesized P(Alg‐g‐NIPAAm) hydrogel has potential to serve as a versatile and improved injectable platform for drug delivery and bone tissue engineering applications.  相似文献   

9.
A highly swelling nanoporous hydrogel (NPH) was synthesized via UV-irradiation graft copolymerization of acrylic acid (AA) onto salep backbone and its application as a carrier matrix for colonic delivery of tetracycline hydrochloride (TH) was investigated. Optimized synthesis of the hydrogel was performed by the classic method. The swelling behavior of optimum hydrogel was measured in different media. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermo-gravimetric analysis (TGA/DTG/DTA). The study of the surface morphology of hydrogels using SEM showed a nanoporous (average pore size: about 350nm) structure for the sample obtained under optimized conditions. The drug delivery results demonstrated that this NPH could successfully deliver a drug to the colon without losing the drug in the stomach, and could be a good candidate as an orally administrated drug delivery system.  相似文献   

10.
The use of biomacromolecular therapeutics has revolutionized disease treatment, but frequent injections are required owing to their short half‐life in vivo. Thus there is a need for a drug delivery system that acts as a reservoir and releases the drug remotely “on demand”. Here we demonstrate a simple light‐triggered local drug delivery system through photo‐thermal interactions of polymer‐coated gold nanoparticles (AuNPs) inside an agarose hydrogel as therapeutic depot. Localized temperature increase induced by the visible light exposure caused reversible softening of the hydrogel matrix to release the pre‐loaded therapeutics. The release profile can be adjusted by AuNPs and agarose concentrations, light intensity and exposure time. Importantly, the biological activity of the released bevacizumab was highly retained. In this study we demonstrate the potential application of this facile AuNPs/hydrogel system for ocular therapeutics delivery through its versatility to release multiple biologics, compatibility to ocular cells and spatiotemporal control using visible light.  相似文献   

11.
In this article, a novel triple-stimuli hydrogel was prepared by simultaneous formation of super paramagnetic iron oxide nanoparticles (SPION) and crosslinking of poly (acrylic acid) grafted onto kappa carrageenan (κC-g-PAA). The structure, thermal stability, surface morphology, and magnetic property of the κC-g-PAA/SPION hydrogel were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy with energy dispersive X-ray analysis (SEM–EDAX), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Moreover, swelling capacity of the obtained hydrogel was measured at different temperature, pH, and magnetic-field to assess the sensitivity of κC-g-PAA/SPION hydrogel. This synthetic hydrogel was also examined as a controlled drug delivery system and defrasirox release was investigated at different temperature, pH, and magnetic-field. The in vitro antibacterial activity of κC-g-PAA/SPION hydrogel was studied against Escherichia coli and Staphylococcus aureus bacteria where the results showed no antibacterial activity of this new hydrogel. In vitro biocompatibility experiments were undertaken using human bladder epithelial cell line HTB 5637. These results indicated the synthesized κC-g-PAA/SPION hydrogel are nontoxic that will be useful for biomedical applications.
Figure
We introduce a novel triple-stimuli and biocompatible kappa-carrageenan-g-poly(acrylic acid)/SPION nanocomposite as a drug delivery system  相似文献   

12.
In this work ion functionalized hydrogels as potent drug delivery systems are presented. The ion functionalization of the hydrogel enables the retention of ionic drug molecules and thus a reduction of burst release effects. Timolol maleate in combination with polymerized anionic 3‐sulfopropylmethacrylate potassium and ibuprofen combined with cationic poly‐[2‐(methacryloyloxy)ethyl] trimethylammonium chloride are investigated in respect to their drug release profile. The results are showing an ion exchange depending release behavior instead of a diffusion‐controlled drug release as it is known from common drug delivery systems. Furthermore, the suitability of such hydrogels for standard methods for sterilization is investigated.  相似文献   

13.
Periodontitis is a chronic inflammatory disease of tooth support tissues leading to progressive destruction of periodontal soft tissues as well as alveolar bone, and can be treated with anti-inflammatory and bone-protective agents to prevent disease progression. Caffeic acid phenethyl ester (CAPE) is a natural polyphenolic compound with anti-inflammation, anti-oxidation and bone tissue repair efficacy. In this work, we synthesized a thermosensitive hydrogel matrix of acetylated carboxymethyl chitosan (A-CC), and firstly applied for periodontal local drug delivery. The biocompatible CAPE-loaded A-CC hydrogel (CAPE-A-CC) has the advantages of forming a drug depot in situ, sustained release and precisely improving the drug concentration in the lesion sites compared with traditional systemic administration. In addition, CAPE-A-CC could significantly inhibit the expression of inflammatory cytokines of TNF-α, IL-1β, IL-6, and IL-17 in macrophages, and increased the expression of alkaline phosphatase (ALP) in human periodontal ligament stem cells (hPDLSC) related to osteogenesis. This study develops a novel in situ thermosensitive hydrogel delivery system to improve the therapeutic potential of natural active ingredient for periodontitis therapy.  相似文献   

14.
New nanoporous iron oxide nanoparticles with superparamagnetic behavior were successfully synthesized from Prussian blue (PB) nanocubes through a thermal conversion method and applied to the intracellular drug‐delivery systems (DDS) of bladder cancer cells (i.e., T24) with controlled release and magnetic guiding properties. The results of the MTT assay and confocal laser scanning microscopy indicate that the synthesized iron oxide nanoparticles were successfully uptaken by T24 cells with excellent biocompatibility. An anticancer drug, that is, cisplatin, was used as a model drug, and its loading/release behavior was investigated. The intracellular drug delivery efficiency was greatly enhanced for the cisplatin‐loaded, PB‐derived, magnetic‐guided drug‐delivery system compared with the non‐drug case. The synthesized nanomaterials show great potential as drug vehicles with high biocompatibility, controlled release, and magnetic targeting features for future intracellular DDS.  相似文献   

15.
In advanced drug delivery systems, drug permeation rate is the key parameter that governs performance. Among the factors that influence the permeation rate, partition effect is presently given less attention. In the first part of this study [L. Shang, S. Zhang, H. Du, S S. Venkatraman, A novel approach for the control of drug release rate through hydrogel membrane. I. Effect of drug immobilization on drug release rate by copolymerization method. Eur. J. Pharm. Biopharm. 68 (2008) 715–723], a scheme was proposed to alter the drug release rate through controlling the partition behavior by immobilizing drug molecules in the membrane. It was hypothesized that the immobilized drug contributes to the total chemical potential of all drug molecules, resulting in a reduction in the partition coefficient. In this paper, the working mechanism of the control scheme is studied through thermodynamic modeling on the assumption that substances in the system are dependent upon one another (rather than independent as they are usually treated). Experimental results provide satisfactory verification of the model. With this model, drug permeation rate can be quantitatively tailored.  相似文献   

16.
The development of electro-stimulated drug release devices is an innovative approach to attain the drug delivery in accurate doses at target sites in a programmed manner. In this work, novel electroactive nanocomposite hydrogels were prepared by encapsulating green-synthesized polypyrrole (PPy) colloids within chondroitin sulfate (CS) networks during the self-crosslinking of CS via N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide chemistry. The structural and morphological properties of CS/PPy hydrogels were studied by Fourier-transformed infrared spectroscopy, scanning electron microscopy, and swelling kinetic measurements. The chemotherapeutic agent 5-fluorouracil (5-FU) was loaded into CS/PPy samples by hydrogel swelling method, or alternatively, by pre-incubating the drug in polymer mixture before crosslinking. Different electrical stimulations can be used to switch ON and accurately tune the 5-FU delivery from GG/PPy hydrogels. A single pulse potential of 5 V switched on the drug delivery up to 90% from nanocomposite hydrogel, in contrast to the low 5-FU amount released in a passive form (< 20%). PPy electroactive behavior played a determining role as the main driving force in 5-FU release activation. Cytotoxicity of hydrogels with and without 5-FU was examined in normal and cancer cells. Considering the high cytotoxicity of 5-FU, the ON/OFF 5-FU release patterns evidenced the potential of CS/PPy hydrogels for electrically controlled drug delivery in implantable or transdermal drug release devices.  相似文献   

17.
A number of studies and works in drug delivery literature are focused on the understanding and modelling of transport phenomena, the pivotal point of a good scaffold design for tissue engineering. Accurate knowledge of the diffusion coefficient of an active drug plays a key role in the analysis, prediction of their kinetics and formulation of efficient drug delivery systems. In this work, the kinetics of the release of methylprednisolone from agar-Carbomer hydrogel were studied taking into consideration the different drug concentrations and clearances typically achieved in in vitro or in vivo tests. Starting from the experiments it is possible to model the transport phenomenon and to calculate the diffusion coefficient through the hydrogel matrix.  相似文献   

18.
Hydrogel contact lenses are ideal drug carriers for ophthalmic drugs delivery. However, some drawbacks of traditional hydrogel restricted their application in the drug delivery field. Herein, we introduced chitosan and β-cyclodextrin (β-CD) into traditional hydrogel in order to improve the properties and control drug release. β-CD functionized and crosslinkable chitosan derivative (CCH) was synthesized and introduced into HEMA/NVP monomers to form HNC tripolymer hydrogel. The introduction of CCH accelerated the polymerization of monomers. Other properties such as equilibrium swelling ratio and oxygen transmissibility of HNC hydrogel were superior to that of HN hydrogel. The capacity of HNC hydrogel to resist the protein absorption was also superior to that of HN hydrogel. Hydrogels exhibited different capacity of drug loading and releasing for different drug.  相似文献   

19.
Nanocomposite hydrogels are one of the most important types of biomaterials which can be used in many different applications such as drug delivery and tissue engineering.Incorporation of nanoparticles within a hydrogel matrix can provide unique characteristics like remote stimulate and improved mechanical strength.In this study,the synthesis of graphene oxide and graphene oxide nanocomposite hydrogel has been studied.Nanocomposite hydrogel was synthesized using carboxymethyl cellulose as a natural base,acrylic acid as a comonomer,graphene oxide as a filler,ammonium persulfate as an initiator,and iron nanoparticles as a crosslinking agent.The effect of reaction variables such as the iron nanoparticles,graphene oxide,ammonium persulfate,and acrylic acid were examined to achieve a hydrogel with maximum absorbency.Doxorubicin,an anti-cancer chemotherapy drug,was loaded into this hydrogel and its release behaviors were examined in the phosphate buffer solutions with different pH values.The structure of the graphene oxide and the optimized hydrogel were confirmed by Fourier-transform infrared spectroscopy,Raman spectroscopy,X-ray diffraction,scanning electron microscopy,and atomic force microscopy.  相似文献   

20.
In this work, a hemicellulose-containing hydrogel was synthesized. As the first step, a temperature- and pH-sensitive copolymer was synthesized from itaconic acid and N-isopropylacrylamide (NIPAAm). Then the hydrogel was prepared by reacting the copolymer with acylated hemicellulose and polyvinyl alcohol. The morphology, compressive strength, thermal stability, swelling/deswelling behavior, drug-release behavior performances of the hydrogels were investigated. The lower critical solution temperature of the hydrogels varied in 34–44°C when the NIPAAm and itaconic acid mass ratios ranged in 100/0–90/10. Both temperature and pH had a significant influence on equilibrium swelling ratio of hydrogels. The equilibrium swelling ratio increased with pH, but decreased with temperature. Cytocompatibility assay demonstrated that this hemicellulose-containing hydrogel was biocompatible. The release process of salicylic acid suggested that this hydrogel had a potential use in controlled drug release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号