首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

Novel polymeric biodegradable and biocompatible copolymeric hydrogels based on N-vinyl-2-pyrrolidone (NVP) and polyethylene glycol diacrylate (PAC) were designed and synthesized. PAC macromonomer was synthesized by a modified procedure and characterized. Poly[N-vinyl-2-pyrrolidone-polyethylene glycol diacrylate] (Poly[NVP-PAC]) hydrogels were synthesized by varying the concentration of PAC. Azobisisobutyronitrile (AIBN) was used as the free radical initiator and N,N1-methylene bis(acryl-amide) (BIS) was employed as the crosslinking agent. These hydrogels were characterized by various spectroscopic techniques. Fourier transform-infrared spectroscopy (FT-IR) confirms the formation of copolymer. Thermogravimetric analysis (TGA) curves obtained were continuous indicating the formation of copolymer. The glass transition temperature (Tg) of the copolymer was measured using differential scanning calorimetry (DSC). The equilibrium swelling measurements were carried out in simulated gastric and intestinal fluids (SGF & SIF). These swelling studies indicated that these gels had a higher sorption capacity in SIF when compared to that in SGF. 5-Fuorouracil (5-FU), an anti-cancer drug was entrapped in these hydrogels and the in-vitro release profiles were established in a sequential manner in SGF and SIF. About 50–56% of the drug entrapped was released in a period of 10 days.  相似文献   

2.
A series of acrylic copolymers containing silyl pendant groups was prepared by free radical cross-linking copolymerization. Me3Si, Et3Si, and Ph3Si together with cubane-1,4-dicarboxylic acid (CDA) were covalently linked with 2-hydroxyethyl methacrylate (HEMA). CDA linked to two HEMA group is the cross-linking agent (CA). Free radical cross-linking copolymerization of the methacrylic acid (MAA) and organosilyl monomers with two different molar ratios of CA was carried out at 60–70°C. The compositions of the cross-linked three-dimensional polymers were determined by FT-IR spectroscopy. The glass transition temperature of the network polymers was determined calorimetrically. Equilibrium swelling studies were carried out in enzyme-free simulated gastric and intestinal fluids (SGF and SIF, respectively). A model hydrophobic drug, the steroid hormone estradiol, was entrapped in these gels, and the in vitro release profiles were established separately in both SGF (pH 1) and SIF (pH 7.4). Incorporation of silyl groups in a new macromolecule system modified network polymers for drug delivery.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

3.
Using diallylmethyl alkyl ammonium salts (CCX) (X is alkyl's chain length, represents 12, 14, 16, and 18, respectively) as a comonomer of methacrylic (MAA), hydrophobically modified hydrogels of poly diallylmethyl alkyl ammonium salts‐methacrylic acid (PCCX‐MAA) were prepared by free radical copolymerization in aqueous solution. The synthetic conditions, such as dosage of cross‐linking agent, reaction concentration and length of alkyl chain were studied in detail. Results indicated that the swelling degree of hydrogels was decreased with dosage of cross‐linking agent, or monomer concentration increased at different pH. Incorporation of the different length of alkyl chain hydrophobic CCX units on PMAA chains by random distribution can change reswelling kinetics. The required time for reaching equilibrium swelling state was longest for PCC16‐MAA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A series of acrylic terpolymers containing silyl pendant groups was prepared by free radical cross-linking copolymerization. Me3Si, Et3Si and t-BuMe2Si together with cubane-1, 4-dicarboxylic acid (CDA) were covalently linked with 2-hydroxyethyl methacrylate (HEMA). The silyl-linked HEMA are abbreviated as TMSiEMA, TESiEMA and TBSiEMA respectively. Cubane-1, 4-dicarboxylic acid (CDA) linked to two HEMA group is the cross-linking agent (CA). Free radical cross-linking terpolymerization of the methyl methacrylate (MMA) and methacrylic acid (MAA) with two different molar ratios of organosilyl monomers and CA was carried out at 60–70 C. The compositions of the cross-linked three-dimensional polymers were determined by FT-IR spectroscopy. The glass transition temperature (Tg) of the network polymers was determined calorimetrically. The Tg of network terpolymers increases with increasing of cross-linking degree. Equilibrium swelling studies were carried out in enzyme-free simulated gastric and intestinal fluids (SGF and SIF, respectively). The gels swelled more in SIF than in SGF. The swelling behaviour of the copolymers was dependent on the content of MAA groups and caused a decrease in gel swelling in pH 1 or an increase in gel swelling in pH 7.4. Based on the great difference in swelling ratio at pH 1 and 7.4 for P-1, P-6 and P-10 appear to be good candidates for colon-specific drug delivery.  相似文献   

5.
An investigation of the free‐radical bulk photopolymerization of 1‐vinyl‐2‐pyrrolidinone (NVP) with an NVP‐based crosslinker, 1,6‐(bis‐3‐vinyl‐2‐pyrrolidinonyl)hexane (BNVP), and an NVP‐based comonomer, 3‐hexyl‐1‐vinyl‐2‐pyrrolidinone (VHP), was carried out. The enthalpies of polymerization were determined for NVP and VHP to be 30.8 and 35.7 kJ/mol, respectively. The rates of polymerization were determined for NVP/VHP and NVP/BNVP systems at various temperatures. These photopolymerization studies revealed that the overall rates of polymerization of these 3‐alkylated‐2‐pyrrolidinone derivatives increased with substitution onto the pyrrolidinone ring. A series of pyrrolidinone‐based additives in bulk NVP were used in model photopolymerizations of NVP for the evaluation of plasticizer effects. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 694–706, 2002; DOI 10.1002/pola.10142  相似文献   

6.
In this work, the poly(methyl methacrylate‐co‐methacrylic acid)/poly(methacrylic acid‐co‐N‐isopropylacrylamide) thermosensitive composite semi‐hollow latex particles was synthesized by three processes. The first process was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly (MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second process was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and crosslinking agent, N,N′‐methylenebisacrylamide, in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐co‐N‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles with solid structure. In the third process, part of the linear poly(MMA‐MAA) core of core–shell latex particles was dissolved by ammonia to form the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles. The morphologies of the semi‐hollow latex particles show that there is a hollow zone between the linear poly(MMA‐MAA) core and the crosslinked poly(MAA‐NIPAAm) shell. The crosslinking agent and shell composition significantly influenced the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) semi‐hollow latex particles. Besides, the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles were used as carriers to load with the model drug, caffeine. The processes of caffeine loaded into the semi‐hollow latex particles appeared four situations, which was different from that of solid latex particles. In addition, the phenomenon of caffeine released from the semi‐hollow latex particles was obviously different from that of solid latex particles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3441–3451  相似文献   

7.
In this work, a novel biodegradable pH-sensitive hydrogel based on poly(?-caprolactone) (PCL), methoxpoly(ethylene glycol) (MPEG) and methacrylic acid (MAA) was prepared by UV-initiated free radical polymerization. The resulting macromonomers and hydrogels were characterized by FTIR and/or 1H NMR. Swelling behaviour and pH sensitivity of the hydrogels were studied in detail. With increase in pH of aqueous medium from 1.2 to 7.2, swelling ratio of the hydrogels increased accordingly. The hydrolytic degradation behaviour was also investigated. The prepared biodegradable pH-sensitive hydrogel based on PCL, MPEG, and MAA might have great potential application in smart drug delivery system.  相似文献   

8.
In this work, the poly(methacrylic acid‐coN‐isopropylacrylamide) thermosensitive composite hollow latex particles was synthesized by a three‐step reaction. The first step was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second step was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and N,N′‐methylenebisacrylamide in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐coN‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles. In the third step, the core–shell latex particles were heated in the presence of ammonia solution to form the crosslinking poly(MAA‐NIPAAm) thermosensitive hollow latex particles. The morphologies of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were observed. The influences of crosslinking agent and shell composition on the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were, respectively, studied. Besides, the poly(MAA‐NIPAAm) thermosensitive hollow latex particles were used as carriers to load with the model drug, caffeine. The effect of various variables on the amount of caffeine loading and the efficiency of caffeine release was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5203–5214  相似文献   

9.
In this article, the synthesis and characterization of novel hydrogel systems designed for colon‐targeting drug delivery are reported. The gels were composed of konjac glucomannan, copolymerized with acrylic acid, and crosslinked by the aromatic azo agent bis(methacryloylamino)‐azobenzene. The influence of various parameters on the dynamic and equilibrium swelling ratios (SRs) of the hydrogels was investigated. It is shown that the SR was inversely proportional to the grafting degree of acrylic acid and the content of bis(methacryloylamino)‐azobenzene. The dependence of SR on the pH indicates that obtained hydrogels are potential for drug delivery to colon. It was possible to modulate the degree of swelling and the pH sensitivity of the gels by changing crosslinking density of the polymer. The main chain of hydrogels can be degraded by β‐glycosidase which is abundant in colon. They can be in vitro degraded for 73% in a month by Cereflo® and 86% in 20 days by Mannaway25L. We have also prepared the hydrogels that loaded with bovine serum albumin about 1.5%, 3%, 9%, and 20% by weight. In vitro release of model drug bovine serum albumin was studied in the presence of Mannaway25L or Fungamyl®800L in pH 7.4 phosphate buffer at 37 °C. The drug release can be controlled by the biodegradation of the hydrogels. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4370–4378, 2004  相似文献   

10.
In this study, N‐vinylpyrrolidone (VP)/methacrylic acid (MAA) copolymers have been prepared at three different mole percents, the methacrylic acid composition being around 5, 10, 15%. MAA and VP monomer mixtures have been irradiated in 60Co‐γ source at different irradiation doses and percent conversions have been determined gravimetrically. ~80% conversion of monomers into hydrogels were performed at 3.4 kGy irradiation dose. These hydrogels were swollen in distilled water at pH 4.0, 7.0, and 9.0. P(VP/MAA) hydrogel which contains 5% methacrylic acid showed the maximum % swelling at pH 9.0 in water. Diffusion of water was found to be of non‐Fickian character. Diffusion coefficients of water in P(VP/MAA) hydrogels were calculated. Initial swelling rates of P(VP/MAA) hydrogels increased with increasing pH and MAA content in hydrogels. Swelling kinetics of P(VP/MAA) hydrogels was found to be of second order. Thermal behavior of PMAA, PVP and P(VP/MAA) hydrogel were investigated by thermal analysis. P(VP/MAA) hydrogel gained new thermal properties and the temperature for maximum weight loss and temperature for half‐life of P(VP/MAA) hydrogel were determined.  相似文献   

11.
A series of an ionic hydrogels composed of N,N‐diethylaminoethyl methacrylamide (DEAEMA), N‐vinyl‐2‐pyrrolidone (VP), and itaconic acid were synthesized by free‐radical cross‐linking copolymerization in water–ethanol mixture by using N,N‐methylenebis(acrylamide) as the cross‐linker, ammonium persulfate as the initiator, and N,N,N′,N′‐tetramethylenediamine as the activator. The swelling behaviors of these hydrogels were analyzed in buffer solutions at various pH. It was observed that the swelling behavior of cross‐linked ionic poly(N,N‐diethylaminoethyl methacrylamide‐coN‐vinyl‐2‐pyrrolidone) [P(DEAEMA/VP)] hydrogels at different pH agreed with the modified Flory–Rehner equation based on the affine network model and the ideal Donnan theory. The swelling process in buffer solutions at various pH was found to be Fickian‐type diffusion. The pH‐reversibility and on–off switching properties of the P(DEAEMA/VP) hydrogels may be considered as good candidate to design novel drug‐delivery system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2819–2828, 2005  相似文献   

12.
《European Polymer Journal》2004,40(8):1637-1643
Polymeric hydrogels based on biocompatible materials, methacrylic acid (MAA), were designed and synthesized. Synthesis was carried out by free-radical copolymerization using potassium persulfate as initiator and N,N-methylenebisacrylamide as crosslinker. Hydrogels were also characterized by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC). DSC was used for the quantitive determination of the amounts of freezing and non-freezing water of the hydrogels with 0.5% of N,N-methylenebisacrylamide. Equilibrium swelling of hydrogels was studied in phosphate buffer of physiological pH (1.0, 4.0, 7.4 and 8.5) at 37 °C. The swelling kinetic of the hydrogels were studied and the kinetic characteristic constant of copolymeric systems, k, and the exponent which characterizes the mechanism of water transport at short times, n, were obtained. Metoclopramide hydrochloride was entrapped into the hydrogels by sorption and the “in vitro” release profile of this drug was established in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). It was observed that the drug release mechanism was non-Fickian.  相似文献   

13.
The objective of this study is to utilize the pH sensitivity of modified mesoporous silica nanoparticles (MSN) for oral drug delivery. In the first time, a pH‐sensitive ionic liquid was synthesized through the quaternization of 3‐aminopropyltrimethoxysilane (3‐ATMS) with sodium monochloroacetate (SMCA). Then, silica nanoparticle was modified by this pH‐sensitive ionic liquid and converted to a pH‐sensitive positive‐charge silica nanoparticle (PCSN). The nanoparticle was characterized by FTIR and SEM. Naproxen as anionic drug molecules was entrapped in this pH‐sensitive positive‐charge silica nanoparticles (PCSN) and the in vitro release profiles were established separately in both (SGF, pH 1) and (SIF, pH 7.4).  相似文献   

14.
pH‐sensitive nanoclay composite hydrogels based on N‐isopropylacrylamide (NIPA) were synthesized by copolymerization with cationic and anionic comonomers. Laponite nanoclay particles served as multifunctional crosslinkers, producing hydrogels with exceptionally high mechanical strengths, as measured by elongation at break. Cationic copolymer gels based on NIPA and dimethylaminoethylmethacrylate were prepared by aqueous free radical polymerization, adopting a procedure reported by Haraguchi (Adv Mater 2002, 14, 1120–1124). Without modification, this technique failed to produce anionic copolymer gels of NIPA and methacrylic acid (MAA), due to flocculation of clay particles. Three methods were conceived to incorporate acidic MAA into nanoclay hydrogels. First, NIPA was copolymerized with sodium methacrylate under dilute conditions, producing hydrogels with good pH‐sensitivity but weak mechanical characteristics. Second, NIPA was copolymerized with methyl methacrylate, which was then hydrolyzed to generate acid sidegroups, yielding hydrogels that were much stronger but less pH sensitive. Third, NIPA was copolymerized with MAA following modification of the nanoclay surface with pyrophosphate ions. The resulting hydrogels exhibited both strong pH‐sensitivities at 37 °C and excellent tensile properties. Optical transparency changed during polymerization, depending on hydrophobicity of the components. This work increases the diversity and functionality of nanoclay hydrogels, which display certain mechanical advantages over conventionally crosslinked hydrogels. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6630–6640, 2008  相似文献   

15.
Novel stimuli‐responsive hydrophilic microspheres were prepared by free radical polymerization of hydroxyethyl methacrylate (HEMA) and methacrylic acid (MA), as hydrophilic monomers, and N‐isopropylacrylamide (NIPAAm) and N,N′‐ethylenebisacrylamide (EBA), as thermo‐sensitive monomer and crosslinker, respectively. Hydrophilic comonomers were introduced in the macromolecular network to synthesize materials with tunable thermal behavior. In addition, by introducing in the polymerization feed both a hydrophilic and a pH‐sensitive monomer, such as MA, dual stimuli‐responsive (pH and temperature) hydrogels were synthesized. The incorporation of monomers in the network was confirmed by infrared spectroscopy, while the network density and the shape of hydrogels was found to strictly depend on the concentration of monomers in the polymerization feed. Thermal analyses showed negative thermo‐responsive behavior with pronounced water affinity of microspheres at a temperature lower than lower critical solution temperature (LCST). In our experiment, the LCST values of the hydrogels were in the range 34.6–37.5°C, close to the body temperature, and the amount of hydrophilic moieties in the polymeric network allows to collect shrinking/swelling transition temperatures higher than the LCST of NIPAAm homopolymers. In order to test the preformed materials as drug carriers, diclofenac diethylammonium salt (DDA) was chosen and drug entrapment percent was determined. Drug release profiles, in media at different temperature and pH, depend on hydrogels crosslinking degree and drug–bead interactions. By using semi‐empirical equations, the release mechanism was extensively studied and the diffusional contribute was evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Polymeric networks and the ensuing hydrogels of MAA and NVP were successfully synthesized using a UV‐initiated free radical polymerization and characterized to assess their applicability as carriers for directed drug delivery. FT‐IR spectroscopy revealed shifts in peak absorbances that indicated the presence of hydrogen bonding complexes between functional groups, while SEM imaging showed that the different comonomers affect the surface morphology of the microparticles. Dynamic pH swelling studies demonstrated the pH responsiveness of the carriers in gastric and intestinal conditions and revealed that systems containing higher concentrations of MAA experienced the highest degree of hydrogen bonding complexation in gastric conditions. The presence of NVP in the systems enhanced swelling. Equilibrium swelling studies revealed that the mesh size was sufficiently large to allow drug diffusion across the networks.

  相似文献   


17.
In this work, a series of biodegradable and pH‐responsive hydrogels based on polyphosphoester and poly(acrylic acid) are presented. A novel biodegradable macrocrosslinker α‐methacryloyloxyethyl ω‐acryloyl poly(ethyl ethylene phosphate) (HEMA‐PEOP‐Ac) was synthesized by first ring‐opening polymerization of the cyclic monomer 2‐ethoxy‐2‐oxo‐1,3,2‐dioxaphospholane using HEMA as the initiator and Sn(Oct)2 as catalyst, and subsequent conversion of hydroxyl into vinyl group. The hydrogels were then fabricated by the copolymerization of the macromonomer with acrylic acid, and their swelling/deswelling and degradation behaviors were investigated. The results demonstrated that the crosslinking density and pH values of media strongly influenced both the swelling ratio and the degradation rate of the hydrogels. The rheological properties of these hydrogels were also studied from which the storage modulus (G′) showed clear dependence on the crosslinking density. MTT and “live/dead” assay showed that these hydrogels were compatible to fibroblast cells, not exhibiting apparent cytotoxicity even at high concentrations. Moreover, in vitro bovine serum albumin release from these hydrogels was also investigated, and it could be found that the release profiles showed a burst effect followed by a continuous release phase, and the release rate was inversely proportional to the crosslinking density of hydrogels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1919–1930, 2010  相似文献   

18.
Poly(N‐vinyl‐2‐pyrrolidone‐crotonic acid) [P(VP/CrA)] hydrogels were prepared by irradiating the ternary mixture of VP/CrA and crosslinking agent ethylene glycol dimethacrylate (EGDMA) in water by γ rays at ambient temperature. Differential scanning calorimetry and thermogravimetric analysis were performed to evaluate the thermal properties of ionized networks and to establish if they showed thermal differences that could be related to the CrA content in the gel system. The volume swelling ratio of P(VP/CrA) hydrogels were investigated as a function of the pH in the immersing solution. The volume swelling ratio of these hydrogels increased with an increase in pH and a decrease CrA content in the hydrogel. The volume swelling ratio of the hydrogels was also evaluated using an equation, based on the Flory—Huggins thermodynamic theory, the phantom network theory of James–Guth and Donnan theory of swelling of weakly charged ionic gels for determination of the molecular weight between crosslinks and the polymer–solvent interaction parameter (χ). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
We report the facile synthesis of poly(VI‐co‐MAA) superabsorbent polyampholytic hydrogels (VI = N‐vinylimidazole, MAA = methacrylic acid) via plasma‐ignited frontal polymerization (PIFP). On igniting the top surface of the reactants with air plasma, frontal polymerization occurred and poly(VI‐co‐MAA) hydrogels were obtained within minutes. The preparation parameters were investigated, along with swelling capacity, morphology, and chemical structures of poly(VI‐co‐MAA) hydrogels. Interestingly, the hydrogels are superabsorbent in water and show ampholytic characteristic toward pH. Moreover, the hydrogels are able to capture cationic dyes through electrostatic interaction, offering the potential for further development as dye adsorbents for water purification. In addition, nanocomposite hydrogels were obtained by embedding quantum dots (carbon dots or CdS nanocrystals) into the polymer matrix, which endows the nanocomposite hydrogels with favorable fluorescence and potential applications in bioimaging and biosensing. The results indicate that FP can be applied as an alternative means for facile synthesis of multifunctional hydrogels with additional efficiency and energy‐saving. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 912–920  相似文献   

20.
《European Polymer Journal》2004,40(8):1683-1690
Multifunctional polymeric materials were obtained from poly(methacrylic acid-co-2-hydroxyethyl methacrylate), to be used as a raw material in the manufacture of contact lens and as drug delivery systems. Poly(methacrylic acid-co-2-hydroxyethyl methacrylate) was prepared by free-radical polymerization in aqueous solution at 60 °C using potassium persulfate (KPS) as initiator and N,N-methylenebisacrylamide (BIS) as cross-linker agent. The dynamic and equilibrium swelling properties of dry glassy poly(methacrylic acid-co-2-hydroxyethyl methacrylate) polymeric networks were studied as a function of pH and methacrylic acid (MAA) content. The water content increase as MAA content and pH increase. Timolol maleate delivery from poly(MAA) and poly(2-hydroxyethyl methacrylate) (HEMA) homopolymers was studied and the results show a Fickian diffusion behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号