首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The activation of the P=C bond of phosphaalkenes with electrophiles is investigated as a means to prepare and characterize unusual organophosphorus compounds. Treatment of RP=CHtBu (1a: R=tBu; 1b: R=1-adamantyl) with HOTf (0.5 equiv) affords diphosphiranium salts [RP-CHtBu-PR (CH(2)tBu)]OTf ([2a]OTf and [2b]OTf), each containing a three-membered P(2)C ring. In contrast, the addition of MeOTf (0.5 equiv) to either 1a or 1b affords diphosphetanium salts [RP-CHtBu-P(Me)R-CHtBu]OTf ([3a]OTf and [3b]OTf) containing four-membered P(2)C(2) heterocycles. The phosphenium triflate [tBuP(CH(2)tBu)]OTf ([5a]OTf) and methylenephosphonium triflate [tBu(Me)P=CHtBu]OTf ([7a]OTf) are identified spectroscopically as intermediates in the formation of [2a](+) and [3a](+), respectively. The phosphenium triflate intermediate can be trapped with 2-butyne to afford phosphirenium salt [MeC=CMe-tBuPCH(2)tBu]OTf ([6a]OTf). Treatment of diphosphetanium [3a]OTf with an excess MeOTf affords [Me(2)P-CHtBu-PMetBu-CHtBu](OTf)(2) ([4a](OTf)(2)), a compound containing a diphosphetanium dication. The molecular structures are reported for [2a]OTf, [2b][H(OTf)(2)], [3a]I, [3b]I, [4a](OTf)(2), and [6a]OTf.  相似文献   

2.
A series of crystalline salts based on the [M(dto)2]2- (dto = 1,2-dithiooxalate, M = Ni, Pt, Cu) dianion with hydrogen-bond donor cations have been synthesised following a molecular tectonics approach. The chelating M(dto)[dot dot dot]HN supramolecular synthon has been exploited in a systematic study of its robustness. The effects of competition between hydrogen-bond acceptors, of the shape and functionality of the cations and of varying the metal in the anion are discussed. The preparation and structural characterisation of the new crystalline phases [4,4'-H(2)bipy][Pt(dto)2] (2), [HNC5H4CO2H-4]2[Pt(dto)2] (5), [HNC5H4CO2H-3]2[Pt(dto)2] (6), [HNC5H4CH2CO2H-4]2[Ni(dto)2] (7), [HNC(5)H(4)CH(2)CO(2)H-3]2[Ni(dto)2] (8), [HNC5H4CONH2-4]2[Ni(dto)2] (9), [HNC5H4CHNOH-4]2[Ni(dto)2] (10), [HNC5H4CHNOH-3]2[Ni(dto)2] (11), [4,4'-H2bipip][Ni(dto)2] (12), [H2NC5H9CO2H-4]2[Pt(dto)2] (12), [H2NC5H9CO2H-4]2[Cu(dto)2] (14), [H2NC5H9CO2H-3]2[Ni(dto)2][H2O]2 (15), [H2NC5H9CO2H-3]2[Pt(dto)2][H2O]2 (16), [H2NC5H9CO2H-3]2[Cu(dto)2][H2O]2 (17), [H(Me)NC5H9CO2H-4]2[Ni(dto)2][H2O]2 (18) is reported. The charge-assisted NH[dot dot dot]dto synthon is formed in each of compounds 1-20, and is apparently much more robust than the conventional synthons used (such as the carboxylic acid dimer), which have a much lower rate of occurrence. The NH[dot dot dot]dto synthon may be generalised to 3- and 4-pyridinium species and 3- and 4-piperidinium derivatives. In the latter cases branching of the hydrogen-bond networks through the NH2 groups arises. The robustness of the NH...dto synthon allows structures of the form [NH cation]2[M(dto)2] to be regarded as being formed by the packing of neutral supermolecules. Cases of isomorphism (as in 16-18) and latent polymorphism (e.g. in 4 and 6) are noted.  相似文献   

3.
Reactions of Hg(OAc)2 with 2 equiv of TabHPF6 [TabH = 4-(trimethylammonio)benzenethiol] in MeCN/MeOH afforded a mononuclear linear complex [Hg(Tab)2](PF6)2 (1). By using 1 as a precursor, a new family of mercury(II) zwitterionic thiolate complexes, [Hg2(Tab)6](PF6)4.2MeCN (2.2MeCN), [Hg(Tab)2(SCN)](PF6) (3), [Hg(Tab)2(SCN)2] (4), [Hg(Tab)I2] (5), {[Hg(Tab)2]4[HgI2][Hg2I6]}(PF6)2(NO3)4 (6), [Hg(Tab)2][HgI4] (7), [Hg(Tab)2][HgCl2(SCN)2] (8), [Tab-Tab]2[Hg3Cl10] (9), and [Hg2(Tab)6]3(PF6)Cl11 (10), were prepared and characterized by elemental analysis, IR spectra, UV-vis spectra, 1H NMR, and single-crystal X-ray crystallography. The [Hg2(Tab)6]4+ tetracation of 2 or 10 contains an asymmetrical Hg2S2 rhomb with an inversion center lying on the midpoint of the Hg...Hg line. The Hg atom of the [Hg(Tab)2]2+ dication of 3 is coordinated to one SCN-, forming a rare T-shaped coordination geometry, while in 4, the Hg atom of [Hg(Tab)2]2+ is coordinated to two SCN-, forming a seesaw-shaped coordination geometry. Through weak secondary Hg...S coordinations, each cation in 3 is further linked to afford a one-dimensional zigzag chain. The trigonal [Hg(Tab)I2] molecules in 5 are held together by weak secondary Hg...I and Hg...S interactions, forming a one-dimensional chain structure. In 6, the four [Hg(Tab)2]2+ dications, one HgI2 molecule, one [Hg2I6]2- dianion, one PF6-, and four NO3- anions are interconnected by complicated secondary Hg...I and Hg...O interactions, forming a scolopendra-like chain structure. The secondary Hg...I interactions, [Hg(Tab)2]2+ and [HgI4]2- in 7, are combined to generate a one-dimensional chain structure, while [Hg(Tab)2]2+ and [HgCl2(SCN)2]2- in 8 are interconnected by secondary Hg...N interactions to form a one-dimensional zigzag chain structure. Compound 9 consists of two [Tab-Tab]2+ dications and one [Hg3Cl10]4- tetraanion. The facile approach to the construction of 2-8 and 10 from 1 may be applicable to the mimicking of a coordination sphere of the Hg sites of metallothioneins.  相似文献   

4.
Reaction of 4,4'-sulfonylbis(benzenethiol) with 4,4'-dichlorodiphenylsulfone under pseudo-high-dilution conditions leads to macrocyclic thioethersulfones [-S-Ar-SO2-Ar-]n (Ar = 1,4-phenylene). These include a highly strained [1+1] cyclodimer (n = 2), a cyclotrimer resulting from thioetherexchange reactions, and a [2+2] cyclotetramer which can adopt two entirely different conformations in the crystalline state, one having molecular D2d ("tennis-ball-seam") symmetry. The same type of reaction is successful using 4,4'-thiobis(benzenethiol) instead of 4,4'-sulfonylbis(benzenethiol) and affords macrocycles with a higher ratio of thioether to sulfone linkages. Exhaustive oxidation of macrocyclic thioethersulfones with hydrogen peroxide affords a series of sulfone-linked paracyclophanes, [-Ar-SO2-]4, [-Ar-SO2-]6, [-Ar-SO2-]8 and [-Ar-SO2-]12. Single crystal X-ray analysis reveals [Ar-SO2-]4 to be a near-perfect square box, whilst the cyclic hexamer [-Ar-SO2-]6 adopts a much more irregular conformation. and [-Ar-SO2-]8 displays a "double-box" structure clearly related to that of [Ar-SO2-]4.  相似文献   

5.
A series of 2[prime or minute]-thionucleosides, as potential inhibitors of ribonucleotide reductases, has been synthesized. Treatment of the 3[prime or minute],5[prime or minute]-O-TPDS-2[prime or minute]-O-(trifluoromethanesulfonyl)adenosine with potassium thioacetate gave the arabino epimer of 2[prime or minute]-S-acetyl-2[prime or minute]-thioadenosine which was deacetylated to give 9-(3,5-O-TPDS-2-thio-[small beta]-d-arabinofuranosyl)adenine in high yield. Treatment of the latter with diethyl azodicarboxylate-C(3)H(7)SH-THF gave 2[prime or minute]-propyl disulfide which was desilylated to give 9-(2-deoxy-2-propyldithio-[small beta]-d-arabinofuranosyl)adenine. Subsequent tosylation (O5[prime or minute]) and displacement of the tosylate with pyrophosphate afforded the 5[prime or minute]-O-diphosphate in a stable form as propyl mixed-disulfide, which upon treatment with dithiothreitol releases 9-(2-thio-[small beta]-d-arabinofuranosyl)adenine 5[prime or minute]-diphosphate. The arabino 2[prime or minute]-mercapto group might interact with the crucial thiyl radical at cysteine 439 leading to the inhibition of ribonucleotide reductases via formation of a Cys439-2[prime or minute]-mercapto disulfide bridge. The 2,6-diamino-, 2-amino-6-chloro- and 2-amino-6-methoxypurine ribosides were also converted to the corresponding 2[prime or minute]-deoxy-2[prime or minute]-propyldithio-[small beta]-d-arabinofuranosyl nucleosides, which might serve as convenient precursors to the arabino epimer of 2[prime or minute]-thioguanosine. Analogously, 2[prime or minute]-deoxy-2[prime or minute]-propyldithioadenosine was prepared from 9-([small beta]-d-arabinofuranosyl)adenine. The nucleoside disulfides show modest cytotoxicity in a panel of human tumor cell lines.  相似文献   

6.
The first discrete, selenium-centered tetranuclear zinc cluster [Zn4(mu4-Se)[Se2P(OPr)2]6] was isolated and characterized. The cluster consists of six edge-bridged dsep ligands with four zinc atoms in a slightly distorted tetrahedron and a mu4-Se atom in the center. In addition, 12 mu2-bridging selenium atoms form a Se12 icosahedron. From variable-temperature 31P NMR studies, it was observed that the cluster [Zn4(Se)[Se2P(OPr)2]6] is partly decomposed to [Zn[Se2P(OPr)2]2] and the monomeric species [Zn[Se2P(OPr)2]2] is further in equilibrium with its dimer [Zn[Se2P(OPr)2]2]2.  相似文献   

7.
[3+3] Cyclocondensation of 5-benzoyl-3-ethoxycarbonyl-6-methylthio-1-R-1,2-dihydropyrid-2-ones with heterocyclic N,N-and N,C-1,3-dinucleophiles proceeds regioselectively to give a series of new tri-and tetracyclic heterosystems, viz. derivatives of 5,6-dihydropyrazolo[1,5-a]pyrido[2,3-d]pyrimidin-6-one, 1,2-dihydropyrido[2,3-d]pyrido[2′,3′: 3,4]pyrazolo[1,5-a]pyrimidin-2-one, 8,9-dihydro-5H-pyrido-[2,3-d]thiazolo[3,2-a]pyrimidin-8-one, 1,2-dihydrobenzo[4,5]imidazo[1,2-a]pyrido[2,3-d]pyrimidin-2-one, and 1,2-dihydrobenzo[4,5]imidazo[1,2-g][1,6]naphthyridin-2-one.  相似文献   

8.
Two structural series, including seven isomorphous heterodinuclear complexes, [Ln(DMSO)4(H2O)3(mu-CN)M(CN)5].H2O ([La-Fe] (1), [Pr-Fe] (2), [Pr-Co] (3), [Nd-Fe] (4), [Nd-Co] (5), [Sm-Fe] (6) and [Sm-Co] (7)), and seven isostructural 2-D stair-like cyano-bridged bimetallic assemblies, [Ln(DMSO)2(H2O)(mu-CN)4M(CN)2]n ([La-Fe]n (8), [Pr-Fe]n (9), [Pr-Co]n (10), [Nd-Fe]n (11), [Nd-Co]n (12), [Sm-Fe]n (13) and [Sm-Co]n (14)) (DMSO = dimethylsulfoxide), have been rationally prepared by a facile approach, a ball-milling method, and characterized by X-ray diffraction and magnetic measurements. The isomorphous structures, in conjunction with the diamagnetism of the Co(3+) and La(3+) ions, allow an approximation to the nature of coupling between the iron(III) and lanthanide(III) ions in the Ln(3+)-Fe(3+) complexes. The Ln(3+)-Fe(3+) interaction is ferromagnetic for the dinuclear [Pr-Fe] (2), [Nd-Fe] (4), and [Sm-Fe] (6) systems and for the 2-D [Pr-Fe]n (9), [Nd-Fe]n (11), and [Sm-Fe]n (13) assemblies.  相似文献   

9.
Lee WY  Liang LC 《Inorganic chemistry》2008,47(8):3298-3306
Deprotonation of N-(2-fluorophenyl)-2,6-diisopropylaniline (H[ (i) PrAr-NF]) with 1 equiv of n-BuLi in toluene at -35 degrees C produced cleanly [ (i) PrAr-NF]Li. Subsequent recrystallization of [ (i) PrAr-NF]Li in diethyl ether generated the bis(ether) adduct [ (i) PrAr-NF]Li(OEt 2) 2. An X-ray study of [ (i) PrAr-NF]Li(OEt 2) 2 showed it to be a four-coordinate species with the coordination of the fluorine atom to the lithium center. The reactions of [ (i) PrAr-NF]Li with MCl 4(THF) 2 (M = Zr, Hf), regardless of the stoichiometry employed, afforded the corresponding dichloride complexes [ (i) PrAr-NF] 2MCl 2 (M = Zr, Hf). Alkylation of [ (i) PrAr-NF] 2MCl 2 with a variety of Grignard reagents generated [ (i) PrAr-NF] 2MR 2 (M = Zr, Hf; R = Me, i-Bu, CH 2Ph). The X-ray structures of [ (i) PrAr-NF] 2ZrCl 2, [ (i) PrAr-NF] 2HfCl 2, [ (i) PrAr-NF] 2ZrMe 2, [ (i) PrAr-NF] 2Zr( i-Bu) 2, and [ (i) PrAr-NF] 2Hf(CH 2Ph) 2 are all indicative of the coordination of the fluorine atoms to these group 4 metals, leading to a C 2-symmetric, distorted octahedral geometry for these molecules.  相似文献   

10.
Wang QQ  Wang DX  Ma HW  Wang MX 《Organic letters》2006,8(26):5967-5970
[Structure: see text] A number of tetraazacalix[2]arene[2]triazines bearing different substituents on the bridging nitrogen atoms were synthesized efficiently using a fragment coupling strategy. The N-arylation of the parent azacalix[2]arene]2]triazine afforded tetra(arylaza)calix[2]arene[2]triazine in 91% yield. The introduction of different substituents on the bridging positions led to the regulation of the cavity of the resulting macrocyclic molecules.  相似文献   

11.
Studies are reported on the reactions of aqueous chlorine with a series of substitution-inert, one-electron metal-complex reductants, which includes [Ru(bpy)3]2+, [Ru(4,4'-Me2bpy)3]2+, [Ru(4,7-Me2phen)3]2+, [Ru(terpy)2]2+, and [Fe(3,4,7,8-Me4phen)3]2+. The reactions were studied by spectrophotometry at 25 degrees C in acidic chloride media at mu = 0.3 M. In general the reactions have the stoichiometry 2[ML3]2+ + Cl2-->2[ML3]3+ + 2Cl-. In the case of [Ru(bpy)3]2+, the reaction is quite photosensitive; the thermal reaction is so slow as to be practically immeasurable. The reactions of [Ru(4,4'-Me2bpy)3]2+ and [Ru(4,7-Me2phen)3]2+ are also highly photosensitive, giving pseudo-first-order rate constants that depend on the monochromator slit width in a stopped-flow instrument; however, the thermal rates are fast enough that they can be obtained by extrapolation of kobs to zero slit width. The reactions of [Ru(terpy)2]2+ and [Fe(3,4,7,8-Me4phen)3]2+ show no appreciable photosensitivity, allowing direct determination of their thermal rate laws. From the kinetic effects of pH, [Cl2]tot, and [Cl-] it is evident that all of the thermal rate laws have a first-order dependence on [ML3]2+ and on [Cl2]. The second-order rate constants decrease as Eo for the complex increases, consistent with the predictions of Marcus theory for an outer-sphere electron-transfer mechanism. Quantum yields at 460 nm for the reactions of [Ru(4,4'-Me2bpy)3]2+ and [Ru(4,7-Me2phen)3]2+ exceed 0.1 and show a dependence on [Cl2] indicative of competition among spontaneous decay of *Ru, nonreactive quenching by Cl2, and reactive quenching by Cl2.  相似文献   

12.
Treatment of LambdaL-[Co(L-cys-N,S)(en)2]+ (l-H2cys = L-cysteine) with [PtCl4]2- in water, followed by the addition of acid, gave an S-bridged CoIII2PtII trinuclear complex ([1]4+), which was reversibly converted to its deprotonated complex ([2]2+) in an aqueous solution. While [1]4+ formed only a trans isomer, [2]2+ existed as a mixture of trans and cis isomers. The selective formation of a cis isomer was achieved by treatment of [1]4+ or [2]2+ with phthalic acid in water, which afforded a unique CoIII4PtII2 hexanuclear complex ([3]4+). Complex [3]4+ was reverted back to [1]4+ by treatment with aqueous HCl, accompanied by the complete cis-to-trans conversion.  相似文献   

13.
The synthesis and spectroscopic properties of trans-[RuL4(C[triple bond]CAr)2] (L4 = two 1,2-bis(dimethylphosphino)ethane, (dmpe)2; 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, 16-TMC; 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane, N2O2) are described. Investigations into the effects of varying the [RuL4] core, acetylide ligands, and acetylide chain length for the [(-)C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph] and [(-)C[triple bond]C(C6H4)(n-1)Ph] (n = 1-3) series upon the electronic and electrochemical characteristics of trans-[RuL4(C[triple bond]CAr)2](0/+) are presented. DFT and TD-DFT calculations have been performed on trans-[Ru(L')4(C[triple bond]CAr)2](0/+) (L' = PH3 and NH3) to examine the metal-acetylide pi-interaction and the nature of the associated electronic transition(s). It was observed that (1) the relationship between the transition energy and 1/n for trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph}2] (n = 1-3) is linear, and (2) the sum of the d(pi)(Ru(II)) --> pi*(C[triple bond]CAr) MLCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2] and the pi(C[triple bond]CAr) --> d(pi)(Ru(III)) LMCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]+ corresponds to the intraligand pi pi* absorption energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]. The crystal structure of trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)2Ph}2] shows that the two edges of the molecule are separated by 41.7 A. The electrochemical and spectroscopic properties of these complexes can be systematically tuned by modifying L4 and Ar to give E(1/2) values for oxidation of trans-[RuL4(C[triple bond]CAr)2] that span over 870 mV and lambda(max) values of trans-[RuL4(C[triple bond]CAr)2] that range from 19,230 to 31,750 cm(-1). The overall experimental findings suggest that the pi-back-bonding interaction in trans-[RuL4(C[triple bond]CAr)2] is weak and the [RuL4] moiety in these molecules may be considered to be playing a "dopant" role in a linear rigid pi-conjugated rod.  相似文献   

14.
The oxidation processes undergone by the [Pt2(mu-S)2] core in [Pt2(P[intersection]P)2(mu-S)2](P[intersection]P = Ph2P(CH2)nPPh2, n= 2,3) complexes have been analysed on the basis of electrochemical measurements. The experimental results are indicative of two consecutive monoelectronic oxidations after which the [Pt2(mu-S)2] core evolves into [Pt2(mu-S2)]2+, containing a bridging disulfide ligand. However, the instability of the monoxidised [Pt2(P[intersection]P)2(mu-S)2]+ species formed initially, which converts into [Pt3(P[intersection]P)3(mu-S)2]2+, hampered the synthesis and characterisation of the mono and dioxidised species. These drawbacks have been surpassed by means of DFT calculations which have also allowed the elucidation of the structural features of the species obtained from the oxidation of [Pt2(P[intersection]P)2(mu-S)2] compounds. The calculated redox potentials corresponding to the oxidation processes are consistent with the experimental data obtained. In addition, calculations on the thermodynamics of possible processes following the degradation of [Pt2(P[intersection]P)2(mu-S)2]+ are fully consistent with the concomitant formation of monometallic [Pt(P[intersection]P)S2)] and trimetallic [Pt3(P[intersection]P)3(mu-S)2]2+ compounds. Extension of the theoretical study on the [Pt2Te2] core and comparisons with the results obtained for [Pt2S2] have given a more general picture of the behaviour of [Pt2X2](X = chalcogenide) cores subject to oxidation processes.  相似文献   

15.
王岩  曾小兰  方德彩  张璐璐 《结构化学》2012,31(9):1365-1372
Density functional theory (DFT) calculations, at the B3LYP/6-311G** level of theory, were performed to study the reaction mechanism and potential energy surface of the [2 + 2], [4 + 2] and [4 + 4] dimerization reactions of some germaaromatic compounds. The influence of reactant's molecular structure and benzene solvent on the potential energy surface of the studied reactions was investigated. Our calculation results show that [2 + 2] and [4 + 4] reactions are concerted and synchronous processes; while [4 + 2] reactions proceed via a concerted but asynchronous way in general. [2 + 2] and [4 + 2] reactions of germabenzenes and 1-germana- phthalene proceed much more easily than the corresponding [4 + 4] reaction, both thermo- dynamically and kinetically; while most [4 + 2] paths have lower activation barrier than the corres- ponding [2 + 2] ones. As the number of six-membered aromatic rings in reactant molecules becomes larger, [2 + 2], [4 + 2] and [4 + 4] reactions become easier to proceed. The influence of substituents at the Ge atom of germabenzenes on the potential energy surface of [2 + 2] and [4 + 2] reactions correlates with their electronic properties and volume. Solvent effect is not crucial for the potential energy surfaces of the studied reactions.  相似文献   

16.
The transformation of acid chlorides (RC(O)Cl) to organic nitriles (RC[triple bond]N) by the terminal niobium nitride anion [N[triple bond]Nb(N[Np]Ar)3]- ([1a-N]-, where Np = neopentyl and Ar = 3,5-Me2C6H3) via isovalent N for O(Cl) metathetical exchange is presented. Nitrido anion [1a-N]- is obtained in a heterodinuclear N2 scission reaction employing the molybdenum trisamide system, Mo(N[R]Ar)3 (R = t-Bu, 2a; R = Np, 2b), as a reaction partner. Reductive scission of the heterodinuclear bridging N2 complexes, (Ar[R]N)3Mo-(mu-N2)Nb(N[Np]Ar)3 (R = t-Bu, 3b; R = Np, 3c) with sodium amalgam provides 1 equiv each of the salt Na[1a-N] and neutral N[triple bond]Mo(N[R]Ar)3 (R = t-Bu, 2a-N; R = Np, 2b-N). Separation of 2-N from Na[1a-N] is readily achieved. Treatment of salt Na[1a-N] with acid chloride substrates in tetrahydrofuran (THF) furnishes the corresponding organic nitriles concomitant with the formation of NaCl and the oxo niobium complex O[triple bond]Nb(N[Np]Ar)3 (1a-O). Utilization of 15N-labeled 15N2 gas in this chemistry affords a series of 15N-labeled organic nitriles establishing the utility of anion [1a-N]- as a reagent for the 15N-labeling of organic molecules. Synthetic and computational studies on model niobium systems provide evidence for the intermediacy of both a linear acylimido and niobacyclobutene species along the pathway to organic nitrile formation. High-yield recycling of oxo 1a-O to a niobium triflate complex appropriate for heterodinuclear N2 scission has been developed. Specifically, addition of triflic anhydride (Tf2O, where Tf = SO2CF3) to an Et2O solution of 1a-O provides the bistriflate complex, Nb(OTf)2(N[Np]Ar)3 (1a-(OTf)2), in near quantitative yield. One-electron reduction of 1a-(OTf)2 with either cobaltocene (Cp2Co) or Mg(THF)3(anthracene) provided the monotriflato complex, Nb(OTf)(N[Np]Ar)3 (1a-(OTf)), which efficiently regenerates complexes 3b and 3c when treated with the molybdenum dinitrogen anions [N2Mo(N[t-Bu]Ar)3]- ([2a-N2]-) or [N2Mo(N[Np]Ar)3]- ([2b-N2]-), respectively.  相似文献   

17.
Seven diiron(II) complexes, [Fe(II)(2)(PMAT)(2)](X)(4), varying only in the anion X, have been prepared, where PMAT is 4-amino-3,5-bis{[(2-pyridylmethyl)-amino]methyl}-4H-1,2,4-triazole and X = BF(4)(-) (1), Cl(-) (2), PF(6)(-) (3), SbF(6)(-) (4), CF(3)SO(3)(-) (5), B(PhF)(4)(-) (6), and C(16)H(33)SO(3)(-) (7). Most were isolated as solvates, and the microcrystalline ([3], [4]·2H(2)O, [5]·H(2)O, and [6]·?MeCN) or powder ([2]·4H(2)O, and [7]·2H(2)O) samples obtained were studied by variable-temperature magnetic susceptibility and Mo?ssbauer methods. A structure determination on a crystal of [2]·2MeOH·H(2)O, revealed it to be a [LS-HS] mixed low spin (LS)-high spin (HS) state dinuclear complex at 90 K, but fully high spin, [HS-HS], at 293 K. In contrast, structures of both [5]·?IPA·H(2)O and [7]·1.6MeOH·0.4H(2)O showed them to be [HS-HS] at 90 K, whereas magnetic and M?ssbauer studies on [5]·H(2)O and [7]·2H(2)O revealed a different spin state, [LS-HS], at 90 K, presumably because of the difference in solvation. None of these complexes undergo thermal spin crossover (SCO) to the fully LS form, [LS-LS]. The PF(6)(-) and SbF(6)(-) complexes, 3 and [4]·2H(2)O, appear to be a mixture of [HS-LS] and [HS-HS] at low temperature, and undergo gradual SCO to [HS-HS] on warming. The CF(3)SO(3)(-) complex [5]·H(2)O undergoes gradual, partial SCO from [HS-LS] to a mixture of [HS-LS] and [HS-HS] at T(1/2) ≈ 180 K. The B(PhF)(4)(-) and C(16)H(33)SO(3)(-) complexes, [6]·(1)/(2)MeCN and [7]·2H(2)O, are approximately [LS-HS] at all temperatures, with an onset of gradual SCO with T(1/2) > 300 K.  相似文献   

18.
The reaction of an S-bridged Co2(III)Ag3(I) pentanuclear complex, [Ag3[Co(aet)3]2][BF4]3 (aet = NH2CH2CH2S-), with paraformaldehyde in basic acetonitrile, followed by adding aqueous ammonia, produced an aza-capped Co2(III)-Ag3(I) complex, [Ag3[Co(L)]2]3+ ([1]3+) (L = N(CH2NHCH2CH2S-)3). The crystal structure of [1]3+ was determined by X-ray crystallography. [1][PF6]3 x H2O, empirical formula C18H44Ag3Co2F18N8OP3S6, crystallizes in the tetragonal space group 142m with a = 13.012(1) A, c = 24.707(2) A, and Z = 4. In [1]3+ the two aza-capped [Co(L)] units are linked by three Ag(I) atoms, such that the two Co(III) atoms are encapsulated in a macrobicyclic metallocage, [Ag3(I)(L)2]3-. [1]3+ was converted to an aza-capped Co4(III)Zn4(II) octanuclear complex, [Zn4O[Co(L)]4]6+ ([2]6+), by reaction with I- in the presence of Zn2+ and ZnO in water. The crystal structure of [2]6+ was also determined by X-ray crystallography. [2][PF6]6 x 8H2O, empirical formula C36H100Co4F36N16O9P6S12Zn4, crystallizes in the monoclinic space group P2(1/n) with a = 14.33(7) A, b = 25.67(10) A, c = 24.83(6) A, beta = 101.3(3) degrees , and Z = 4. In [2]6+ each of four [Co(L)] units is bound to each trigonal Zn3(II) face of the tetrahedral [Zn4(II)O]6+ core, such that each Co(III) atom is encapsulated in a macrobicyclic [Zn4(II)O(L)] fragment. Treatment of [2]6+ with a basic aqueous solution resulted in a cleavage of the Zn-S bonds to produce an aza-capped Co(III) mononuclear complex, [Co(L)] ([3]), from which [1]3+ is readily reproduced by the reaction with Ag+ in water. All the reactions were found to proceed with retention of the absolute configuration (delta or lambda) of the Co(III) chiral centers; deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and A-[3] were derived from deltadelta-[Ag3[Co(aet)3]2]3+. The contributions to circular dichroism (CD) from the triple helicity in [1]3+, besides from the asymmetric N and S donor atoms and the Co(III) chiral centers in [1]3+ and [2]6+, were estimated by comparing the CD spectra of deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and delta-[3].  相似文献   

19.
The upper-rim 1,3-alternate tetraoxacalix[2]arene[2]triazine azacrowns were constructed effectively by macrocyclic condensation reaction of diamines with dichlorinated tetraoxacalix[2]arene[2]triazine intermediates that were synthesized from the stepwise fragment coupling reactions of 3,5-dihydroxybenzoic acid esters with cyanuric chlorides. Because of the formation of conjugation of amino groups with triazine rings, tetraoxacalix[2]arene[2]triazine azacrowns existed in a mixture of syn- and anti-isomeric forms. Both fluorescence titration and 1H NMR spectroscopic study showed that tetraoxacalix[2]arene[2]triazine azacrowns interacted with fluoride anion, leading to cavity changes of the host molecules.  相似文献   

20.
lp;&-5q;1 The reactions of [Tl2[S2C=C[C(O)Me]2]]n with [MCl2L2] (1:1) or with [MCl2(NCPh)2] and PPh3 (1:1:2) give complexes [M[eta2-S2C=C[C(O)Me]2]L2] [M = Pt, L2 = 1,5-cyclooctadiene (cod) (1); L2 = bpy, M = Pd (2a), Pt (2b), L = PPh3, M = Pd (3a), Pt (3b)] whereas with MCl2 and QCl (2:1:2) anionic derivatives Q2[M[eta2-S2C=C[C(O)Me]2]2] [M = Pd, Q = NMe4 (4a), Ph3P=N=PPh3 (PPN) (4a'), M = Pt, Q = NMe4 (4b)] are produced. Complexes 1 and 3 react with AgClO4 (1:1) to give tetranuclear complexes [[ML2]2Ag2[mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2]](ClO4)2 [L = PPh3, M = Pd (5a), Pt (5b), L2 = cod, M = Pt (5b')], while the reactions of 3 with AgClO4 and PPh3 (1:1:2) give dinuclear [[M(PPh3)2][Ag(PPh3)2][mu2,eta2-(S,S')-S2C=C[C(O)Me]2]]]ClO4 [M = Pd (6a), Pt (6b)]. The crystal structures of 3a, 3b, 4a, and two crystal forms of 5b have been determined. The two crystal forms of 5b display two [Pt(PPh3)2][mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2] moieties bridging two Ag(I) centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号