首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
基于微加工技术(Microfabrication technology)制备微传感电极并进行电化学表面修饰,研制出一种用于水体中NO#3浓度检测的电化学微传感器。微传感器以两电极传感芯片为信号转换部件,使用电流脉冲沉积法在铂质工作电极表面制备微观形貌呈枝簇状的铜质敏感材料,利用铜质材料对酸性溶液中NO#3的电催化还原特性,测量还原电流的大小,实现对NO#3浓度的检测。采用扫描电子显微镜(SEM)和X射线衍射分析(XRD)技术对敏感膜进行表征和监测,探索高活性铜质敏感膜的制备方法;使用微传感器对硝酸盐标准样品进行检测,在低浓度范围(12.5~200μmol/L),响应灵敏度为0.1422μA/(μmol/L);高浓度范围(200~3000μmol/L),响应灵敏度为0.0984μA/(μmol/L),均表现出较高的检测灵敏度;使用微传感器对北京等地的实际湖库水样进行检测,结果与专业水质检测机构采用紫外分光光度法的测试结果偏差在#3.9%~15.4%之间,两者具有一定的相关性,表明微传感器能够用于实际水样中NO#3浓度的测量。  相似文献   

2.
采用微加工技术制备了集成有工作电极和对电极的两种重金属微传感电极芯片,工作电极表面采用电沉积法修饰纳米金(Gold nanoparticles,GNPs),由半胱氨酸(L-cysteine,Cys)和天冬氨酸(L-aspartic acid,Asp)修饰制备Asp/Cys/GNPs/微传感电极芯片,并利用原位镀锡膜(Sn film)的方法,制成Sn/GNPs/微传感电极芯片。采用方波伏安法和方波溶出伏安法考察了两种微传感电极芯片对重金属离子Cu2+,Pb2+和Zn2+的响应特性。Asp/Cys/GNPs/微传感电极芯片可有效识别Cu2+和Pb2+,线性范围为5~2000μg/L,检出限为1μg/L;Sn/GNPs/微传感电极芯片可有效识别Cu2+,Pb2+和Zn2+,线性检测范围分别为5~500μg/L,5~500μg/L和10~500μg/L,检出限分别为2,3和5μg/L。相比而言,Asp/Cys/GNPs/微传感电极芯片具有较宽的检测范围,而Sn/AuNPs/微传感电极芯片具有较高的灵敏度,两种传感器绿色环保、制备简单、更新简便、易于集成,在水质在线监测方面具有应用前景。  相似文献   

3.
电位无标型糖化血红蛋白免疫微传感器   总被引:1,自引:0,他引:1  
研制了基于标准CMOS工艺和微加工技术的电位无标型免疫微传感器,可实现糖化血红蛋白浓度与血红蛋白浓度的简便检测。该微传感器包括含有信号读出电路的场效应型微传感集成芯片和一次性测试试条。微传感集成芯片由本实验室设计并经新加坡Chartered半导体公司流片制备。一次性测试试条采用微加工技术制备于柔性塑料片上,包括敏感电极阵列和三维微结构测量池。基于自组装单层膜并引入纳米金颗粒的方法,在测试试条电极表面固定抗体。采用循环伏安法和交流阻抗法对电极表面的修饰过程进行了测试和分析。该传感器对糖化血红蛋白和血红蛋白检测的线性范围分别为4~24mg/L和60~180mg/L。  相似文献   

4.
研制了一套基于光杠杆原理的微悬臂梁阵列传感器平台,并通过使用设计制作的微悬臂梁阵列芯片展示其在生物化学方面的检测应用.传感器平台使用光导纤维束分别与激光器耦合作为悬臂梁阵列的扫描光源,具有良好的检测稳定性,检测信号噪声水平约为2 nm;设计制作的微悬臂梁阵列芯片具有良好的平直度,温度响应均匀一致,各梁温度改变响应灵敏度偏差不超过5.0%.将整套传感系统被用于检测水溶液中的Hg2+,检测浓度范围为1 ~ 200 ng/mL;同一浓度下微悬臂梁阵列检测结果曲线一致性良好,平均偏差小于15%.在研制仪器平台上,分别实现了自制和国外商品化芯片对1.0和0.2 ng/mL样品的检测,结果表明,制作的微悬臂梁阵列芯片的检测灵敏度相对较低,需进一步改进悬臂梁阵列制作工艺.  相似文献   

5.
结合DNA酶优异的氧化还原催化特性和碳纳米管的电化学特性, 制备了单壁碳纳米管-DNA酶复合材料, 并通过壳聚糖将其固定到玻碳电极表面构建了电化学生物传感界面. 研究了单壁碳纳米管-DNA酶复合结构的氧化还原反应催化特性, 并以此为传感平台构建了葡萄糖氧化酶电化学生物传感器. 结果表明, 单壁碳纳米管-DNA酶复合材料修饰的电极对过氧化氢的响应具有较宽的线性范围(5×10-6~1×10-2 mol/L)和良好的检测灵敏度(检出限为1×10-6 mol/L). 采用制备的葡萄糖氧化酶传感器实现了对葡萄糖的快速灵敏检测.  相似文献   

6.
研制了一种基于多孔纳米氧化锡(SnO2)催化剂的微催化燃烧式气体传感芯片(Pellistor). 基于微机电系统(Micro- Electro-Mechanical Systems, MEMS)工艺制备硅基封闭膜式微催化燃烧式传感器, 通过气相沉积技术在Pt微加热电极和高温绝缘层表面制备三维纳米氧化锡催化膜, 利用催化膜对氢气良好的催化特性, 采用惠斯通电桥电路进行测量, 实现对空气环境中氢气在0~4%浓度范围内的快速检测, 响应时间和恢复时间分别达到0.65 s和2.32 s, 灵敏度达75.4 mV/1% H2, 线性度为99.4%. 考察200 天内该传感芯片对氢气的检测能力, 传感芯片表现出良好的稳定性, 精确度保持在95%以上. 在绝缘层高温性能稳定的条件下, 将三维纳米氧化锡应用于微催化燃烧式传感器的氢气检测, 对催化燃烧式传感器性能的改进具有重要的意义.  相似文献   

7.
基于电化学聚合将蛋白A(staphylococcal protein A)与吡咯掺杂后共聚于电极表面的新方法设计传感界面,结合采用微机电系统(micro electro mechanical systems, MEMS)技术制备的两电极系统,开发了一种新型的利用电聚合引入蛋白A进而固定抗体、提高检测性能的安培型免疫微传感器,并应用于沙门氏菌(Salmonella typhimurium, S.typhi)的检测.考察了传感器检测沙门氏菌的响应特性,优化了相关实验条件及参数,并结合扫描电镜(scanning electron microscopy,SEM)图像验证了该抗体固定方法的有效性.实验表明,采用电化学聚合方法固定蛋白A进行敏感膜修饰,操作简便省时(<10 min)、可控性强,试剂用量少(10 μL),能够有效改善抗体固定效果,提高传感器检测性能,适于微型免疫传感器的表面修饰研究.以此设计的安培型免疫微传感器能够检测100 cfu/mL沙门氏菌溶液,具有良好的重复性和特异性.  相似文献   

8.
基于微流体脉冲驱动控制技术搭建了电化学微流控芯片的制备系统.首先将纳米银墨水和甘油溶液分别微喷射到玻璃基底表面形成微电极图形和微流道液体阳模图形;然后分别进行烧结和聚二甲基硅氧烷(PDMS)模塑工艺制得微电极和微流道;最后将微电极和微流道键合形成电化学微流控芯片.研究了系统参量对液滴产生的影响以及液滴直径和重叠率对液滴成线的影响,制得的微电极最小线宽为45 μm、厚度为2.2 μm、电阻率为5.2 μΩ·cm,制得的微流道最小线宽为35 μm,流道表面光滑.采用制得的电化学微流控芯片进行了葡萄糖浓度的电化学流动检测.结果表明,葡萄糖溶液的浓度与响应电流具有较高的线性关系,可对一定浓度范围内的葡萄糖溶液进行定量检测.基于微流体脉冲驱动控制技术的电化学微流控芯片制备方法具有微喷射精度高、重复性好,制备系统结构简单、成本低廉等优点,可用于生化分析、生物传感器等领域的芯片制备.  相似文献   

9.
本文构建了以TI-Spreeta传感器为基础敏感元件、集微流道系统和数据信号处理电控盒于一体的表面等离子共振生物传感分析系统.在乙醇体积分数0.00~0.60浓度范围内检测乙醇标准溶液时,体积分数改变0.1,将引起共振像素位置变化约9.4个像素数目,表明传感系统的可逆性和重复性良好.采用自组装成膜技术制备了传感器敏感膜,观察了乙肝表面抗原和乙肝表面单克隆抗体的结合、解离以及传感器敏感膜的再生等动态变化过程.与传统的酶联免疫检测法相比,本方法具有无需酶标记、灵敏准确、快速,能够实现在线连续监控检测等优点,在食品安全、环境监测、药物筛选和生物医学研究中具有较大的应用潜力.  相似文献   

10.
李洋  孙楫舟  边超  佟建华  夏善红 《分析化学》2011,(11):1621-1628
基于循环伏安扫描(CV)的电化学沉积方法制备出多孔性纳米簇状结构铜膜,结合采用微机电系统(Micro electro mechanical systems,MEMS)技术制备的微电极芯片,研制出用于NO3-检测的安培型微传感器。考察该微传感器对NO3-的响应性能,在6.25~300mmol/L浓度范围内,灵敏度为0.0526mA/(mmol/L),线性度99.93%;在300~3500mmol/L浓度范围内,灵敏度为0.0353mA/(mmol/L),线性度99.18%。与文献报道相比,该传感器表现出更高的灵敏度。考察水体中常见的NO2-,Cl-,HPO42-/PO43-,SO42-,HCO3-/CO23-,Na+和K+等离子对该传感器的干扰性能,传感器表现出较好的抗干扰性能。采用该微传感器对实际水样进行测试,测试结果与具有权威资质的测试公司的测试结果之间具有一定的相关性。实验结果表明,采用循环伏安沉积方法在微电极表面制备的纳米簇状结构的铜敏感膜,比表面积大,催化活性高,对NO3-表现出了很好的敏感特性和选择性,适用于对微量NO3-的检测。  相似文献   

11.
In this work, design and fabrication of micro-gas-sensors, polymerization and deposition of poly(pyrrole) thin films as sensitive layer for the micro-gas-sensors by electrochemical processing, and characterization of the polymer films by FTIR, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), are reported. The change in conductance of thin polymer layers is used as a sensor signal. The behaviours, including sensitivity, reproducibility and reversibility, to various ammonia gas concentrations ranging from 8 ppm to 1000 ppm are investigated. The influence of the temperature on the electrical response of the sensors is also studied. The experimental results show that these ammonia gas sensors are efficient since they are sensitive to ammonia, reversible and reproducible at room temperature.  相似文献   

12.
《Analytical letters》2012,45(15):2176-2184
A small-size gas-tight optical measuring system for detection of ammonia nitrogen in water was prepared based on gas-phase ammonia induced color change of the sensing element that was made by loading bromothymol blue (BTB) in a transparent porous glass fiber membrane. The gas-tight optical measuring system consists of a gas-testing and a liquid-sample chamber connected with each other by means of tubes and a mini-pump that cycles the gas between the two chambers. A 625-nm light emitting diode (LED), a photodetector and a sensing element were mounted in the gas-testing chamber for optical response to ammonia gas released from the water in the liquid-sample chamber. Release of ammonia gas was realized by alkalinizing the water sample with NaOH. Owing to the amount accumulation of ammonia gas in the sealing system, the ammonia nitrogen detection limit of the device can be very low. A small concentration of ammonia nitrogen, as low as 0.05 mg/L, was detected. The two linear-response ranges from 0.05 mg/L to 0.26 mg/L and from 0.26 mg/L to 2.62 mg/L were obtained. A relative standard deviation of ≤1% was determined by multiple measurements of the same sample.  相似文献   

13.
An ammonia gas sensor chip was prepared by coating an electrochemically-etched porous Si rugate filter with a chitosan film that is crosslinked by glycidoxypropyltrimethoxysilane (GPTMS). The bromothylmol blue (BTB), a pH indicator, was loaded in the film as ammonia-sensing molecules. White light reflected from the porous Si has a narrow bandwidth spectrum with a peak at 610 nm. Monitoring reflective optical intensity at the peak position allows for direct, real-time observation of changes in the concentration of ammonia gas in air samples. The reflective optical intensity decreased linearly with increasing concentrations of ammonia gas over the range of 0–100 ppm. The lowest detection limit was 0.5 ppm for ammonia gas. At optimum conditions, the full response time of the ammonia gas sensor was less than 15 s. The sensor chip also exhibited a good long-term stability over 1 year. Therefore, the simple sensor design has potential application in miniaturized optical measurement for online ammonia gas detection.  相似文献   

14.
A solid-state, diffuse reflectance-based fiberoptic sensor is described for quantifying ammonia. This sensor is constructed by immobilizing chlorophenol red, a weak acid chromophoric indicator dye, in a microporous polypropylene membrane. A flow-injection analysis system is used to carry a 10-μL aliquot of the sample across the treated membrane. Ammonia in the sample diffuses through the air-filled pores within the membrane structure before reacting with the indicator dye. A reversible acid-base reaction between ammonia and chlorophenol red results in a measurable change in the reflectance at 560 nm. Response characteristics include a peak response within 20 s, a limit of detection of 0.2 ± 0.1 mM ammonia, and a dynamic range of up to 60 mM ammonia. The analytical utility of this sensor is demonstrated by measuring ammonia levels in 48 individual samples collected during the growth of PC3 human prostate cancer cells in a typical serum-containing growth medium. Accuracy of the proposed sensor is verified by a comparison of results from this sensor to those from a conventional enzyme assay.  相似文献   

15.
An ultra-thin layer of polypyrrole can be coated on non-conducting substrates, e.g., acrylic, by dip coating into a colloidal suspension of polypyrrole. This thin coating reversibly combines with low concentrations of ammonia or hydrazine with a concomitant reversible increase in resistance; 0.1 μg cm?3 of ammonia can readily be detected with a 1 cm2 area of sensor.  相似文献   

16.
A new, simple and low‐cost method for patterning hydrophobic barriers in porous support such as paper by Parafilm® has been introduced. This method is then used for electrochemical paper‐based ammonia sensor construction. Ammonia sensor is based on electrochemical concentration cell which ammonia reaction with electrolyte in halves cell caused in concentration gradient and therefore potential difference dependent on ammonia concentration. The effect of concentrations of the involved chemicals, time periods of the required processes, the presence of Faraday cage as well as the effects of different salts used in the salt bridge on the response of the sensor, were investigated in order to find the optimized conditions.  相似文献   

17.
An ammonia traces analyser based on photoacoustic spectroscopy is described. The system uses a CO(2) laser and a properly designed resonant photoacoustic cell to achieve ammonia detection at sub-parts-per-billion (ppb) level. The instrument features unattended automatic on-line monitoring of ammonia with a detection limit of 0.1 ppb. Interferences from atmospheric CO(2) and H(2)O are efficiently suppressed by a careful selection of the laser wavelength and a compensation of the water vapour signal made with a high-precision hygrometer. The cell design enables continuous measurement at high flow rates (up to 5 l/min), which guarantees a fast response time of the system for the monitoring of ammonia, a sticky polar molecule that adheres to most surfaces. Various examples of applications of the instrument in the semiconductor industry and for atmospheric pollution monitoring are presented. They demonstrate the excellent performances of the system and its suitability for these applications.  相似文献   

18.
《Analytical letters》2012,45(14):1179-1191
Abstract

The hydrolysis of nicotinamide in alkaline solutions was studied. An ammonia gas-sensing electrode was used to follow the formation of ammonia. A technique making use of simulated reactions has been developed to calibrate the electrode under dynamic conditions overcoming problems arising because of the relatively slow response of the sensor. A general expression has been derived for the pseudo first-order rate constant valid over the concentration range 0.005 to 0.10 M nicotinamide, 0.1 to 0.5 M hydroxide and the temperature range 22° to 31° C, under constant ionic strength (0.5 M NaOH + NaC1O4).  相似文献   

19.
A new ammonia gas microsensor was developed, based on the large resistance change of an ionic conductor (CuBr) film when exposed to low NH3 concentrations. The detection is based on specific interactions between ammonia molecules contained in the gas atmosphere and mobile copper ions in the copper(I) bromide layer. The sensor is operating at ambient temperature and allows highly sensitive and specific ammonia detection. The sensor works at ammonia concentrations between 1 and 500 ppm. There are no significant cross-effects to acetylene and carbon monoxide and only a weak cross-sensitivity to hydrogen sulfide gas (200 ppm). The selectivity was experimentally compared with commercial tin dioxide sensors (TGS 826). The sensor fabrication is a simple process, allowing low cost device production.  相似文献   

20.
用石墨烯(G)代替Vulcan XC-72炭(XC)作Ir的载体制备石墨烯载Ir(Ir/G)催化剂. 电化学的测量结果表明, Ir/G催化剂对氨氧化的电催化性能优于XC炭载Ir(Ir/XC)催化剂. X射线衍射(XRD)谱测量结果表明, Ir/G和Ir/XC催化剂的Ir粒子平均粒径相似. 拉曼光谱的测量结果表明, G的石墨化程度和电导率高于XC. 因此, Ir/G催化剂对氨氧化的电催化性能优于Ir/XC催化剂. 氨在Ir/G催化剂电极上氧化的电流密度与氨浓度呈很好的线性关系曲线, 相关系数R为0.99557. 因此, Ir/G催化剂电极可作为电流型电化学氨传感器的工作电极.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号