首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hou L  Li D  Shi WJ  Yin YG  Ng SW 《Inorganic chemistry》2005,44(22):7825-7832
Six mixed-valence Cu(I)Cu(II) compounds containing 4'-(4-pyridyl)-2,2':6',2' '-terpyridine (L1) or 4'-(2-pyridyl)-2,2':6',2' '-terpyridine (L2) were prepared under the hydrothermal and ambient conditions, and their crystal structures were determined by single-crystal X-ray diffraction. Selection of CuCl(2).2H(2)O or Cu(CH(3)COO)(2).H(2)O with the L1 ligand and NH(4)SCN, KI, or KBr under hydrothermal conditions afforded 1-dimensional mixed-valence Cu(I)Cu(II) compounds [Cu(2)(L1)(mu-1,1-SCN)(mu-Cl)Cl](n) (1), [Cu(2)(L1)(mu-I)(2)Cl](n) (2), [Cu(2)(L1)(mu-Br)(2)Br](n) (3), and [Cu(2)(L1)(mu-1,3-SCN)(2)(SCN)](n)(4), respectively. Compound 5, prepared by layering with CuSCN and L1, is a 2-dimensional bilayer structure. In compounds 1-5, the L1 ligand and X (X = Cl, Br, I, SCN) linked between monovalent and divalent copper atoms resulting in the formation of mixed-valence rectangular grid-type M(4)L(4) or M(6)L(6) building blocks, which were further linked by X (X = Cl, Br, I, SCN) to form 1- or 2-dimensional polymers. The sizes of M(4)L(4) units in 1-4 were fine-tuned by the sizes of X linkers. Reaction of Cu(CH(3)COO)(2).H(2)O with L2 and NH(4)SCN under hydrothermal conditions gave mixed-valence Cu(I)Cu(II) compound [Cu(2)(L2)(mu-1,3-SCN)(3)](n) (6). Unlike those in 1-5, the structure of 6 was constructed from thiocyanate groups and the pendant pyridine of L2 left uncoordinated. The temperature-dependent magnetic susceptibility studies on compounds 1 and 4 showed the presence of mixed-valence electronic structure.  相似文献   

2.
A series of structurally characterized copper complexes of two pyridazine-spaced cryptands in redox states + (I,I), (II,I), (II), (II,II) are reported. The hexaimine cryptand L(I) [formed by the 2 + 3 condensation of 3,6-diformylpyridazine with tris(2-aminoethyl)amine (tren)] is able to accommodate two non-stereochemically demanding copper(I) ions, resulting in [Cu(I)(2)L(I)](BF(4))(2) 1, or one stereochemically demanding copper(II) ion, resulting in [Cu(II)L(I)()](BF(4))(2) 3. Complex 3 crystallizes in two forms, 3a and 3b, with differing copper(II) ion coordination geometries. Addition of copper(I) to the monometallic complex 3 results in the mixed-valence complex [Cu(I)Cu(II)L(I)](X)(3) (X = PF(6)(-), 2a; X = BF(4)(-), 2b) which is well stabilized within this cryptand as indicated by electrochemical studies (K(com) = 2.1 x 10(11)). The structurally characterized, octaamine cryptand L(A), prepared by sodium borohydride reduction of L(I), is more flexible than L(I) and can accommodate two stereochemically demanding copper(II) ions, generating the dicopper(II) cryptate [Cu(II)(2)L(A)](BF(4))(4) 4. Electrochemical studies indicate that L(A) stabilizes the copper(II) oxidation state more effectively than L(I); no copper redox state lower than II,II has been isolated in the solid state using this ligand.  相似文献   

3.
Treatment of cuprous halide (Cu(I)X, X = Cl, Br, and I) and a tripodal tripyridine ligand (L) consisting of a 1,3,5-triethylbenzene spacer gave a unique two-dimensional (2D) polymer sheet structure involving a rare Cu(I)(6)X(6) hexagon prism cluster unit, which exhibits intense fluorescence around 448-476 nm.  相似文献   

4.
Self-assembly of four bis(pyridyl) ligands with longer flexible spacer: 1,4-bis(3-pyridylaminomethyl)benzene (L1), 1,4-bis(2-pyridylaminomethyl)benzene (L2), 1,3-bis(3-pyridylaminomethyl)benzene (L3) and 1,3-bis(2-pyridylaminomethyl)benzene (L4), and CuX (X = Br and I) leads to the formation of eight [Cu(n)X(n)]-based (X = Br and I; n = 1, 2, and 4) complexes, [Cu(2)I(2)L1(PPh(3))(4)] (1), [Cu(4)Cl(2)Br(2)(L4)(2)(PPh(3))(6)]·(CH(3)CN)(2) (2), [Cu(2)I(2)(L3)(2)] (3), {[Cu(2)Br(2)L2(PPh(3))(2)]·(CH(2)Cl(2))(2)}(n) (4), [CuIL1](n)·nCH(2)Cl(2) (5), [CuIL1](n) (6), [CuIL4](n) (7) and [Cu(2)I(2)L4](n) (8), which have been synthesized and characterized by elemental analysis, IR, TG, powder and single-crystal X-ray diffraction. Structural analyses show that the eight complexes possess an increasing dimensionality from 0D (1-3) to 1D (4) to 2D (5-8), in which 1 and 2 contain a CuX unit, 2-7 contain a Cu(2)X(2) unit and 8 contains a Cu(4)X(4) unit. Such evolvement indicates that the conformation of flexible bis(pyridyl) ligands and the participation of triphenylphosphine (PPh(3)) as a second ligand take an essential role in the framework formation of the Cu(i) complexes. Moreover, a pair of symmetry-related L3 ligands in complex 3 coordinate to the rhomboid Cu(2)I(2) dimer to form "handcuff-shaped" dinuclear structures, which are further joined together through intermolecular N-HI hydrogen bonds to furnish a 2D (4,4) layer. Although complexes 5 and 6 exhibit a similar 2D (4,4) layer constructed from L1 ligand bridging [Cu(2)I(2)](n) units, the different packing fashion of the layers leads to the formation of 3D porous frameworks of 5 and dense 3D frameworks of 6. The "twisted-boat" conformation of the Cu(4)I(4) tetramer unit in complex 8 has not been reported so far.  相似文献   

5.
Hexanuclear cage complexes [M6L6X](X)5 [M = Cu(I), Ag(I); L = 6,6'-bis(4-ethynylpyridine)2,2'-bipyridine; X = BF4-, SbF6-] have been prepared using a self-assembly approach; these architectures encapsulate anions in the solid-state and are fluxional in solution.  相似文献   

6.
单取代烷烃液相生成焓估算新方法   总被引:4,自引:0,他引:4  
曹晨忠  高硕 《物理化学学报》2005,21(9):1028-1035
根据烷基R和取代基X(Cl、Br、I、OH、SH、NO2、CN、NH2、CHO和COOH等)本身的电子效应, 应用烷基R的极化效应指数PEI和取代基X的电负性χX定量描述单取代烷烃RX中R和X间的相互作用, 再结合已提出的C—C键和C—H键的键连接矩阵的特征根, 建立了一个估算单取代烷烃RX液相生成焓的方程: ΔfH0(RX, l)=-39.5001ΣX1CC+33.5508NCC-0.0789ΣX1CH-25.7087NCH+0.1557ΣSij+0.9976H(X)- 27.6642 PEI(R)×χX+31.5043χX 此方程用于估算RX的生成焓, 不仅结果非常令人满意(其相关系数R达到0.9999, 标准偏差SD仅为2.87 kJ•mol-1), 而且方程中各项参数的物理意义也非常明确, 便于人们深入地理解分子结构与性能的关系. 应用去一法(leave-one-out)对以上方程进行交叉验证分析表明该方程具有较好的稳定性和较强的预测能力. 研究发现, 著名的Luo氏方程是上述方程的一种特殊形式, 上述方程是对Luo氏方程的一个较大扩展. 该方法为研究更复杂体系内基团之间的相互作用提供了一种新的方法和思路.  相似文献   

7.
The novel binucleating ligand, 6,6 prime-methylene-bis(5 prime-amino-3 prime,4 prime-benzo-2 prime-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L) was prepared and reacted with copper(II) salts in dry MeOH to yield mixtures of copper(I) and copper(II) complexes with Cl- and ClO-4 counter ions. The amine functions on the ligand release protons to form copper(I) complexes: (Cu2L)X2, where X=Cl−, ClO4-. The complexes were oxidized to (Cu2L)X4 with H2O2 in DMF; Cu(NO3)2 gave a different complex, [Cu2(H4L)(NO3)2](NO3)2, as regards proton releasing ability, coordination and oxidation number. Evidence for the structures of this new tetraamino-tetrathioether ligand and its copper complexes is provided by 1H-, 13C-n.m.r., mass, u.v.–vis., i.r. spectra, elemental analyses, molar conductivities and magnetic moments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Peng R  Li D  Wu T  Zhou XP  Ng SW 《Inorganic chemistry》2006,45(10):4035-4046
This work focuses on the systematic investigation of the influences of pyrimidine-based thioether ligand geometries and counteranions on the overall molecular architectures. A N-containing heterocyclic dithioether ligand 2,6-bis(2-pyrimidinesulfanylmethyl)pyridine (L1) and three structurally related isomeric bis(2-pyrimidinesulfanylmethyl)benzene (L2-L4) ligands have been prepared. On the basis of the self-assembly of CuX (X = I, Br, Cl, SCN, or CN) and the four structurally related flexible dithioether ligands, we have synthesized and characterized 10 new metal-organic entities, Cu4(L1)2I4 1, Cu4(L1)2Br4 2, [Cu2(L2)2I2.CH3CN]n 3, [Cu(L3)I]n 4, [Cu(L3)Br]n 5, [Cu(L3)CN]n 6, [Cu(L4)CN]n 7, [Cu2(L4)I2]n 8, [Cu2(L4)(SCN)2]n 9, and [[Cu6I5(L4)3](BF4).H2O]n 10, by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that the 10 Cu(I) complexes possess an increasing dimensionality from 0D (1 and 2) to 1D (3-5) to 2D (6-9) to 3D (10), which indicates that the ligand geometry takes an essential role in the framework formation of the Cu(I) complexes. The influence of counteranions and pi-pi weak interactions on the formation and dimensionality of these coordination polymers has also been explored. In addition, the photoluminescence properties of Cu(I) coordination polymers 4-10 in the solid state have been studied.  相似文献   

9.
The n-alkyl halides, RX, were oxidatively added to the platina(II)cyclopentane complexes [Pt[(CH2)4](NN)], in which NN = bpy (2,2'-bipyridyl) or phen (1,10-phenanthroline), to give the platinum(IV) complexes [PtRX[(CH2)4](NN)], R = Et and X = Br or I; R = nBu and X = I, 1-3. The same reactions with the analogous dimethyl complex [PtMe2(bpy)] gave the expected platinum(IV) complexes [PtRXMe2(bpy)], R = Et or nPr and X = Br or I; R = nBu and X = I, 4-8. Kinetics of the reactions in benzene and acetone was studied using UV-vis spectrophotometery and a common S(N)2 mechanism was suggested for each case. The platina(ii)cyclopentane complexes reacted faster than the corresponding dimethyl analogs by a factor of 2-3. This is described as being due to a lower positive charge, calculated by density functional theory (DFT), on the platinum atom of [Pt[(CH)2)4](bpy)] compared with that on the platinum atom of the dimethyl analog [PtMe2(bpy)]. The values of DeltaDeltaS(double dagger) = DeltaS(double dagger)(acetone) - DeltaS(double dagger)(benzene) were found to be either positive or negative in different reactions and this is related to the solvation of the corresponding alkyl halide. It is suggested that in these reactions of RX reagents, for a given X, the electronic effects of the R group are mainly responsible for the change in the rates of the reactions and the bulkiness of the group is far less important.  相似文献   

10.
By using molecular oxygen bis(μ-oxo)dicopper(III) complexes can be produced from Cu(I) complexes with ligand L(X) (L(X)=p-substituted N-ethyl-N-[2-(2-pyridyl)ethyl]-2-phenylethylamine; X=OMe, Me, H, Cl, NO(2)) in which the benzylic position of the ligand is activated and hydroxylated by the Cu(2)O(2) core (see reaction scheme). Detailed characterization of this new C-H bond activation reaction by the bis(μ-oxo)dicopper(III) core reveals important information on the fundamental chemistry underlying copper monooxygenase reactivity.  相似文献   

11.
Vega A  Saillard JY 《Inorganic chemistry》2004,43(13):4012-4018
DFT calculations on Cu(4)(mu3-X)4L4 (X = H, CH(3), CCH, F, Cl, Br, I; L = NH(3), PH(3)) indicate that, regardless of its nature, X- acts essentially as a two-electron sigma-type ligand and that the covalent part of the Cu...Cu bonding depends mainly upon the a1 component of the orbital interaction between the L4Cu4(4+) and X4(4-) fragments. The first excited state corresponds to the occupation of a Cu...Cu bonding LUMO of a1 symmetry, which is of dominant Cu(4s/4p) character when X- is an electronegative ligand, such as a halide. Consequently, this excited state is computed to exhibit Cu...Cu distances shorter than those in the ground state, in agreement with the luminescence properties of this type of compound.  相似文献   

12.
Fused pyridazines (1,2,3,6,7,8-hexahydro-cinnolino[5,4,3-cde]cinnoline, L and its 2,2,7,7-tetramethyl derivative, Me4L) are designed as rigid multidentate ligands for the construction of framework solids. In combination with copper(I) bromide (iodide) they provide excellent structural examples for predictive engineering and the possibilities for further fine-tuning of the framework architectures facilitated by the tetradentate function of the ligands and effective cooperation of organic and inorganic bridges. This study features control over helical structures for (CuX)n chains and homo/heterochiral combination of the helices in the lattice, the design of a range of channelled and tubular CuX networks and the structural significance of ligand shape complementarity. 3D tetragonal Cu2X2(L) frameworks exist either as chiral or achiral supramolecular isomers Cu2I2(Me4L) and Cu12I12[Cu(CH3CN)]3(L)(6-)Cu3I6.CH3CN illustrate 3D hexagonal channelled and tubular arrays; Cu2I2(Me4L)(CH3CN) and Cu4I4(L)(CH3CN)2 complexes are 1D polymers.  相似文献   

13.
Copper(II) complexes of isatin-3,2'-quinolyl-hydrazones of the type [Cu(L)X] (where X=Cl(-), Br(-), NO(3)(-), CH(3)COO(-) and ClO(4)(-)] and their adducts Cu(L)X.2Y [where Y=pyridine or dioxane and X=Cl(-), Br(-), NO(3)(-) and ClO(4)(-)] have been synthesized under controlled experimental conditions and characterized by using the modern spectroscopic and physicochemical techniques viz. IR, electronic, EPR, elemental analysis, magnetic moment susceptibility measurements and molar conductance, etc. On the basis of spectral studies a four coordinated square planer geometry is assigned for Cu(L)X type complexes whereas the adducts (Cu(L)X.2Y were found to have a six coordinated octahedral geometry.  相似文献   

14.
By adding acetyl halide to solutions of copper(I)acetate in mixtures of acetonitrile and acetic acid, highly pure copper(I) halides can be prepared. These form with pyridine and alkylpyridines (= L) yellow or greenish yellow compounds of the formula Cu(L)3X. Colourless compounds of the formula Cu(L)X can be obtained by thermal decomposition of these compounds. All these compounds exhibit an intensive fluorescence of different colours. Some compounds of the formula Cu(L)X change at low temperatures reversibly the fluorescence colour. It is proposed, to use for this phenomenon the term ‘Fluorescence Thermochromism’.  相似文献   

15.
茉莉酮酸甲酯是茉莉花的主香成份。本文报道了另一类茉莉酮酸甲酯的类似物2-烃基-3-氧-环戊基-乙酸甲酯, 2-亚苄基-3-氧-环戊基-乙酸甲酯, 和2-(1-羟基-戊基)-3-氧-环戊基-乙酸甲酯, 及其合成的新方法。  相似文献   

16.
An empirical method for estimating the standard enthalpy of some polar compounds is presended in this paper, that is
△△fH°(RX/CH3X)= △fH°(RX)- △fH°(CH3X)=a+bIx
where △△fH°(RX/CH3X) represents the standard enthalpy difference between CH3-X and R-X(R=Et, i-Pr, t-Bu, etc). It is a new polarity parameter defined by us. A good result was obtained for nearly 70 polar compounds.  相似文献   

17.

Reaction of the ligand 3-(pyridin-2-yl)pyrazole (L) with Cu(ClO4)2 and CuX2 (X=Cl, Br, I) gives complexes with stoichiometry [Cu(L)2X]ClO4 (X = Cl, Br, I). The new complexes were characterized by elemental analyses and infrared and electronic spectroscopy. The crystal structure of the [Cu(L)2Br]ClO4 was determined by X-ray crystallography. The cation complex (i.e. [Cu(L)2Br]P) contains copper(II) with a distorted trigonal bipyramid geometry with a Br ligand occupying an equatorial site. The penta-coordinated metal atom is bonded to two pyridinic nitrogens, two pyrazolic nitrogens, and one bromide anion. The pyrazolic H atoms are hydrogen bonded to Br atoms, resulting in infinite hydrogen-bonded chains running in the b direction. There are π‐π stacking interactions (charge-transfer arrays) between the parallel aromatic rings belonging to adjacent chains that may help to form hydrogen bonding in the coordination geometry around Cu (II).  相似文献   

18.
Copper(I) complexes of the ligand cis-1,3,5-tris(cinnamylideneamino)cyclohexane (L) have been prepared from a versatile precursor complex, [Cu(I)(L)NCMe]BF4, which incorporates a labile acetonitrile ligand that can be exchanged to give a range of new Cu(L)X complexes (where X = Cl, Br, NO2, SPh). 1H NMR spectra and X-ray structures of the Cl, Br and NO2 complexes show L coordinated in a symmetric fashion about the copper centre. The complexes have been further characterised using UV/Visible spectroscopy and cyclic voltammetry. CuLCl shows an electrochemically reversible Cu(I/II) redox couple at 0.51 V (vs. Ag/AgCl) while the CuLNO2 complex shows an analogous quasi-reversible wave at 0.41 V (vs. Ag/AgCl).  相似文献   

19.
Under different situations, solvothermal reactions of 3,5-diethyl-4-(4-pyridyl)-pyrazole (HL) with CuX or CuX(2) (X = Cl, Br, I, and SCN) afforded five copper(I) coordination polymers, {CuX[CuL](3)·solvent}(n) (X = Cl, 1; Br, 2; I, 3; X = SCN and solvent = MeCN, 4) and {Cu(2)I(2)[CuL](3)}(n) (5). X-ray diffraction analyses show that all the complexes have trinuclear [CuL](3) (referred as Cu(3)) secondary building units featuring planar nine-membered Cu(3)N(6) metallocycles with three peripheral pyridyl groups as connectors, which are further linked by CuX or Cu(2)X(2) motifs to generate single- or double-strand chains. Interestingly, the Cu(I) atoms within the Cu(3) units in 1-5 behave as coordinatively unsaturated π-acid centers to contact soft halide/pseudohalide X atoms of CuX and Cu(2)X(2) motifs, which lead to novel sandwich substructures of [(Cu(3))(Cu(2)X(2))(Cu(3))] (X = Br, I, and SCN) in 2-4. In addition, both the π-acid [Cu(3)]···X contacts and intertrimer Cu···Cu interactions contribute to the one-dimensional (1D) double-strand and 2D/3D supramolecular structures of 1-5. All of these complexes exhibit high thermostability and bright solid-state phosphorescence upon exposure to UV radiation at room temperature. The emissions arise from the mixtures of metal-centered charge transfer, metal to ligand charge transfer, and halide-to-ligand charge transfer excited states, and can be tuned by intermolecular π-acid [Cu(3)]···halide/pseudohalide contacts.  相似文献   

20.
A series of Cu(I) complexes formulated as [Cu(2)(mu-X)(2)(PPh(3))(L)(n)] were prepared with various mono- and bidentate N-heteroaromatic ligands (X = Br, I; L = 4,4'-bipyridine, pyrazine, pyrimidine, 1,5-naphthyridine, 1,6-naphthyridine, quinazoline, N,N-dimethyl-4-aminopyridine, 3-benzoylpyridine, 4-benzoylpyridine; n = 1, 2). Single-crystal structure analyses revealed that all the complexes have planar {Cu(2)X(2)} units. Whereas those with monodentate N-heteroaromatic ligands afforded discrete dinuclear complexes, bidentate ligands formed infinite chain complexes with the ligands bridging the dimeric units. The long Cu...Cu distances (2.872-3.303 A) observed in these complexes indicated no substantial interaction between the two Cu(I) ions. The complexes showed strong emission at room temperature as well as at 80 K in the solid state. The emission spectra and lifetimes in the microsecond range were measured at room temperature and at 80 K. The emissions of the complexes varied from red to blue by the systematic selection of the N-heteroaromatic ligands (lambda(em)(max): 450 nm (L = N,N-dimethyl-4-aminopyridine) to 707 nm (L = pyrazine)), and were assigned to metal-to-ligand charge-transfer (MLCT) excited states with some mixing of the halide-to-ligand (XL) CT characters. The emission energies were successfully correlated with the reduction potentials of the coordinated N-heteroaromatic ligands, which were estimated by applying a simple modification based on the calculated stabilization energies of the ligands by protonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号