首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of multiblock poly(ether-ester)s based on poly(butylene succinate) (PBS) as the hard segments and hydrophilic poly(ethylene oxide) (PEO) as the soft segments was synthesized with the aim of developing degradable polymers which could combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic poly(ether-ester)s were synthesized by the catalyzed two-step transesterification reaction of dimethyl succinate, 1,4-butanediol and α,ω-hydroxyl terminated poly(ethylene oxide) (PEO, = 1000 g/mol) in bulk. The content of soft PEO segments in the polymer chains was varied from about 10 to 50 mass%. The effect of the introduction of the soft PEO segments on the structure, thermal and physical properties, as well as on the biodegradation properties was investigated. The composition and structure of these aliphatic segmented copolyesters were determined by 1H NMR spectroscopy. The molecular weights of the polyesters were verified by gel permeation chromatography (GPC), as well as by viscometry of dilute solutions and polymer melts. The thermal properties were investigated using differential scanning calorimetry (DSC). The degree of crystallinity was determined by means of DSC and wide-angle X-ray scattering. A depression of melting temperature and a reduction of crystallinity of the hard segments with increasing content of PEO segments were observed. Biodegradation of the synthesized copolyesters, estimated in enzymatic degradation tests in phosphate buffer solution with Candida rugosa lipase at 37 °C was compared with hydrolytic degradation in the buffer solution. The weight losses of the samples were in the range from 2 to 10 mass%. GPC analysis confirmed that there were significant changes in molecular weight of copolyesters with higher content of PEO segments, up to 40% of initial values. This leads to conclusion that degradation mechanism of the poly(ether-ester)s based on PEO segments occurs through bulk degradation in addition to surface erosion.  相似文献   

2.
制备了高分子量的聚丁二酸丁二醇酯,并通过与对苯二甲酸二甲酯的无规共聚调节其生物可降解性及力学性能,得到了具有优良机械性能和不同生物降解速度的一系列共聚物,并对共聚物序列结构、热力学性能、结晶性进行了研究.结果表明,该共聚物为无规共聚物,PBS和PBT分别结晶.共聚物的结晶熔点符合无规共聚物的Flory方程.  相似文献   

3.
In this work, new investigations on the effect of comonomer sequential structure on the thermal and crystallization behaviors and biodegradability have been implemented for the biodegradable poly(butylene succinate‐co‐butylene terephthalate) (PBST) as well as aliphatic poly(butylene succinate) (PBS). At first, these copolyesters were efficiently synthesized from dimethyl succinate and/or dimethyl terephthalate and 1,4‐butanediol via condensation polymerization in bulk. Subsequently, their molecular weights and macromolecular chain structures were analyzed by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. By means of differential scanning calorimeter (DSC) and wide‐angle X‐ray diffractometer (WAXD), thermal and crystallization behaviors of these synthesized aromatic–aliphatic copolyesters were further explored. It was demonstrated that the synthesized copolyesters were revealed to have random comonomer sequential structures with thermal and crystallization properties strongly depending on their comonomer molar compositions, and that crystal lattice structures of the new crystallizable copolyesters shifted from the monoclinic crystal of semicrystalline PBS to triclinic lattice of the poly(butylene terephthalate) (PBT) with increasing the terephthalate comonomer composition, and the minor comonomer components were suggested to be trapped in the crystallizable component domains as defects. In addition, the enzymatic degradability was also characterized for the copolyesters film samples. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1635–1644, 2006  相似文献   

4.
摘要合成了一系列聚丁二酸/甲基丁二酸丁二醇共聚酯(PBSM), 利用DSC, 1H NMR和X射线衍射等方法对共聚物组成、 热学性能、 结晶性能、 等温结晶行为进行了研究. 结果表明, 引入甲基丁二酸共聚单元较为显著地改变了聚丁二酸丁二酯(PBS)的热学性能, 利用Hoffman\|Weeks方程得到的共聚物平衡熔点随共聚物的组分含量增加而降低, 玻璃化转变温度亦有所降低, 熔点则符合无规共聚物的Flory方程. 此外, 利用Avrami方程分别研究了均聚物PBS及共聚物PBSM-20的等温结晶行为, 结果表明, 在所研究的温度范围内, 聚酯结晶速率随温度升高而降低, PBS和PBSM\-20的Avrami指数分别介于2.8~3.0和2.7~3.0之间, 结晶方式为三维生长异相成核, 而X射线衍射测试结果表明晶体结构几乎不变.  相似文献   

5.
A series of aliphatic biodegradable poly(butylene succinate-co-dl-lactide) (PBSLA) copolyesters were synthesized with the aim of improving the degradation rate of poly(butylene succinate) (PBS) by incorporation of dl-oligo(lactic acid) (OLA) into the PBS molecular chains. The composition and sequential structure of the aliphatic copolyesters were investigated by proton nuclear magnetic resonance (1H NMR) spectroscopy. The crystallization behaviors, the crystal structure and morphology of the copolyesters were investigated by using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarizing optical microscopy (POM), respectively. The results indicate that the crystallization of the copolyesters was restricted by the incorporation of lactide (LA) units, which further tuned the mechanical properties of the copolyesters. The copolyesters could form complete spherulites and exhibit the same crystal structure as that of PBS. Enzymatic study indicated that the copolyesters with higher content of LA units degraded faster, and the degradation began in the amorphous regions and then in the crystalline regions. The morphology and the resulting degradation products of the copolyesters were investigated by scanning electron microscopy (SEM) and 1H NMR analysis during the degradation process.  相似文献   

6.
A series of biodegradable polyesters were synthesized from dicarboxylic acids and 1,3-propanediol catalyzed by transestrification polycondensation reaction in the bulk. The structure, average molecular weights and physical properties of the resulting aliphatic polyesters were characterized by 1H NMR, FT-IR, solution viscosity, GPC, DSC and TGA. Homopolyesters show higher degree of crystallinity, melting and thermal stability in comparison to copolyesters. The biodegradability of the polyesters was determined by monitoring the normalized weight loss of polyester films with time in phosphate buffer (pH 7.2) without and with Rhizopus delemar lipase at 37 °C. The rate of enzymatic degradation of homopolyesters follows the path PPSu > PPAd > PPSe. PPSe did not show significant weight loss in presence of enzyme which may be due to its highest degree of crystallinity and melting point compared to the PPSu, PPAd and copolyesters. In the soil burial degradation polyester sample showed severe surface degradation by the attack of microorganism.  相似文献   

7.
A series of bio-based poly(butylene adipate-co-butylene furandicarboxylate) (PBAFs) copolyesters were synthesized from 2,5-furandicarboxylic acid (FDCA), adipic acid (AA), and 1,4-butanediol (BDO) through a two-step polycondensation reaction. The copolyesters were characterized by 1H NMR, GPC, DSC, XRD and tensile tests, and their enzymatic degradation behaviors were also investigated. They were random copolymers whose composition was well controlled and the weight average molecular weight (Mw) ranged from 54,100 to 76,800 g/mol. By combining the results of DSC and XRD, with increasing FDCA content, PBAFs changed from semi-crystalline polymers to nearly amorphous polymers, then to semi-crystalline polymers again. Specifically, the crystallizability and melting temperature (Tm) decreased with FDCA content 0–50 mol%, but rose again at FDCA content 75–100 mol%. And, the glass transition temperature (Tg) increased continuously with increasing FDCA content. Consequently, the tensile modulus and strength decreased but the ultimate elongation increased at lower FDCA content (0–50 mol%), which were converse at higher FDCA content (75–100 mol%). Especially, the P(BA-40 mol% BF) shows outstanding elasticity and rebound resilience. In addition, the influences of FDCA content on the enzymatic degradation by lipase from porcine pancreas were studied in terms of the weight loss and morphological change. At FDCA content of 0–50 mol%, the copolyesters showed biodegradability but only the degradation rate of P(BA-10 mol% BF) was faster than PBA. When the FDCA content were 75–100 mol%, they were actually un-degradable. Thus, depending on their composition, PBAFs might find applications from biodegradable elastomers to thermoplastics.  相似文献   

8.
脂肪族聚酯及共聚酯的生物降解性研究   总被引:11,自引:1,他引:11  
以酯交换法或直接缩聚法合成了一系列脂肪族聚酯,经二异氰酸酯(HDI)扩链得到含氨酯键的聚酯及共聚酯,用DSC、X射线衍射等分析表征了聚酯及共聚物的结构和性能。用土埋试验、CO2释放试验和黑曲霉降解试验着重研究了这些聚合物的生物降解性,详细讨论了聚酯结构、组成及聚酯分子量对生物降解性的影响。  相似文献   

9.
聚(丁二酸丁二酯-co-丁二酸丙二酯)的等温结晶行为研究   总被引:1,自引:0,他引:1  
以1,4-丁二酸、1,4-丁二醇和1,3-丙二醇为原料通过直接熔融缩聚法合成了聚丁二酸丁二酯(PBS),聚丁二酸丙二酯(PPS)和聚(丁二酸丁二酯-co-丁二酸丙二酯)(PBSPS)等脂肪族聚酯.利用1H-NMR,WAXD,DSC和POM等研究了聚酯的结晶结构和结晶动力学过程等结晶行为.PBSPS的结晶晶型与PBS一致,说明只有丁二酸丁二酯(BS)单元结晶而丁二酸丙二酯(PS)单元处于无定形区.聚酯等温结晶后,在升温熔融过程中出现了多重熔融峰.分析表明多重熔融峰主要来自于聚酯升温过程中的熔融-重结晶行为.利用Avrami方程分析了聚酯的等温结晶动力学,Avrami指数n为2.2~2.8,说明聚酯等温结晶时主要以异相成核的三维生长方式进行;随着PS单元的增多,聚酯的表观结晶活化能升高,也就是说BS单元的结晶变得困难.POM观察到聚酯等温结晶时都出现了环带球晶现象,球晶形态会随着结晶温度和化学结构差异而改变.  相似文献   

10.

A series of copolyesters were synthesized by melt‐polycondensation reaction of poly(ethylene terephtalate) (PET) with various proportions of equimolar compositions of p‐acetoxybenzoic acid (p‐ABA), hydroquinone diacetate (HQDA) and terephtalic acid (TPA). Viscosity, liquid crystallinity, thermal properties, degree of crystallinity and thermal stabilitiy of these copolyesters were investigated by Ubbelohde viscometer, hot‐stage polarized light microscopy (PLM), differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and thermogravimetric analysis (TGA), respectively. On the basis of viscosity measurement, it was observed that intrinsic viscosity values of the copolyesters are increased regularly with increasing amounts of aromatic units (p‐ABA, HQDA and TPA) in the polymer chain. Thermotropic liquid crystalline behavior was observed in the copolyesters containing over 50 mol% of rigid p‐ABA/HQDA/TPA aromatic units. DSC analysis of the anisotropic copolyesters revealed broad and weak endotherms associated with the nematic phases, and the melting temperatures were found to be in the processable region. As the mol% of PET in the polymer chain increased, the specific enthalpies of fusion and the degree of crystallinity of the copolyesters were also increased regularly.  相似文献   

11.
Aliphatic poly(butylene 1,12-dodecanedioate) is an interesting biodegradable polyester characterized by high thermal stability and high crystallinity, but low melting temperature. In order to improve the performances of this polymer some novel fully aliphatic random copolyesters have been prepared starting from 1,4-butanediol and different molar ratio of 1,12-dodecanedioc acid and 1,4-cyclohexanedicarboxylic acid. The copolymers have a notable resistance to thermal degradation, thermal properties which vary as a function of the composition, and maintain the mechanical characteristics of the poly(alkylene dicarboxylate). In particular, the copolymer containing the 70 mol% of 1,4-cyclohexanedicarboxylate units improves the thermal properties of the poly(butylene 1,12-dodecanedioate) and presents a very high biodegradation rate, higher than those of the two parent homopolymers. This behavior has been correlated to the low level of crystallinity of the sample and to the composition of the amorphous phase. Therefore, these novel fully aliphatic copolymers represent an interesting new class of copolyesters which can balance good physical properties and high biodegradability.  相似文献   

12.
合成了一系列聚丁二酸/苯基丁二酸丁二醇共聚酯(PBSBS),利用DSC、1H-NMR和X射线等测试手段对共聚物组成、热力学性能、结晶性能、等温结晶行为进行了表征和研究.结果表明,含苯基的共聚单元的引入显著改变了聚丁二酸丁二醇酯(PBS)的热力学性能4,利用Hoffman-Week曲线得到的共聚物平衡熔点随共聚组分含量的增加显著降低,玻璃化转变温度则明显升高,结晶熔点符合无规共聚物的Flory方程.此外,利用Avrami方程对均聚物PBS以及共聚物PBSBS-10分别进行了等温结晶行为研究,结果表明共聚使结晶速率降低,PBS和PBSBS-10的Avrami指数分别介于2.8~3.0和2.7~2.9之间,结晶方式为三维生长异相成核,X射线测试结果表明共聚不影响晶体结构.  相似文献   

13.
傅强 《高分子科学》2014,32(7):953-960
Poly(butylene succinate) (PBS) with different molecular weight was synthesized from 1, 4-butanediol and succinic acid by direct melt condensation. The synthesized PBS was identified by IH-NMR and FTIR spectrometry. The molecular weight was calculated from the intrinsic viscosity, and its value was between 20000 and 70000. The crystallization behavior and crystal morphology as function of molecular weight were investigated by DSC and PLM, respectively. The mechanical properties and hydrolytic degradation behaviors related with change of molecular weight were also studied in this work. The results demonstrated that the properties of PBS were determined by both molecular weight and crystallization properties (crystallinity as well as crystal morphology). Our work is important for the design and preparation of PBS with proper molecular weight for its practical application.  相似文献   

14.
以琥珀酸、富马酸、丁二醇为原料,用共缩聚的方法合成了一系列高分子量聚 (琥珀酸丁二醇酯-共-富马酸丁二醇酯)。然后在催化剂四氧化锇和N-甲基吗啉- N-氧化物以及水存在下,使高分子主链中富马酸丁二醇酯共聚单元的碳碳不饱和双 键发生羟基化反应得到含有亲水性侧羟基的功能性聚酯。对上述合成的生物降解性 高分子运用核磁共振(NMR)、红外(FT-IR)、热分析等方法进行了结构与物理性 能表征。  相似文献   

15.
Two aliphatic polyesters that consisted from succinic acid, ethylene glycol and butylene glycol, —poly(ethylene succinate) (PESu) and poly(butylene succinate) (PBSu)—, were prepared by melt polycondensation process in a glass batch reactor. These polyesters were characterized by DSC, 1H NMR and molecular weight distribution. Their number average molecular weight is almost identical in both polyesters, close to 7000 g/mol, as well as their carboxyl end groups (80 eq/106 g). From TG and Differential TG (DTG) thermograms it was found that the decomposition step appears at a temperature 399 °C for PBSu and 413 °C for PESu. This is an indication that PESu is more stable than PBSu and that chemical structure plays an important role in the thermal decomposition process. In both polyesters degradation takes place in two stages, the first that corresponds to a very small mass loss, and the second at elevated temperatures being the main degradation stage. The two stages are attributed to different decomposition mechanisms as is verified from the values of activation energy determined with iso-conversional methods of Ozawa, Flyn, Wall and Friedman. The first mechanism that takes place at low temperatures, is auto-catalysis with activation energy E = 128 and E = 182 kJ/mol and reaction order n = 0.75 and 1.84 for PBSu and PESu, respectively. The second mechanism is nth-order reaction with E = 189 and 256 kJ/mol and reaction order n = 0.68 and 0.96 for PBSu and PESu, respectively, as they were calculated from the fitting of experimental results.  相似文献   

16.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

17.
Poly(butylene succinate-co-butylene adipate) was obtained from 1,4-butanediol and dimethyl esters of succinic and adipic acids through a two step process of transesterification and polycondensation. High molecular weight polyesters were synthesized using hexamethylene diisocyanate as chain extender. The effect of chain extension reaction time and chain extender content on polyester molecular weight, thermal and mechanical properties, was investigated. Polyesters were characterized by means of nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC), viscosity measurements, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and mechanical property measurements. Chain extension reaction had as a result the significant increase of polyester molecular weight leading to increased tensile strength. Polyester crystallinity, as calculated from XRD and DSC analysis, and melting temperature decreased upon chain extension, while glass transition temperature increased. Polyester biodegradation was investigated by soil burial and enzymatic hydrolysis using the enzyme Pseudomonas fluorescens cholesterol esterase. It appears that biodegradation was affected by polyester crystallinity, rather than by its molecular weight.  相似文献   

18.
Poly(ethylene succinate) (PES), poly(trimethylene succinate) (PTS) and their copolyesters with various compositions were synthesized through a direct polycondensation reaction with titanium tetraisopropoxide as the catalyst. The results of intrinsic viscosity and GPC have proven successful in preparing high molecular weight polyesters. The compositions and the sequence distributions of the copolyesters were determined by analyses of 1H NMR and 13C NMR spectra. The sequence distributions of ethylene succinate units and trimethylene succinate (TS) units were found to be random. Their thermal properties were characterized using differential scanning calorimeter and thermal gravimetric analyzer. All of the copolymers exhibit a single glass transition temperature (Tg). There is no significant difference in the thermal stability among these polyesters. Wide angle X-ray diffractograms (WAXD) were obtained for polyesters which can be crystallized isothermally. The results of thermal analysis and the WAXD patterns indicate that the incorporation of TS units into PES significantly inhibits the crystallization behavior of PES. Additionally, the crystal pattern of PTS is quite different from that of PES. Dynamic mechanical properties of moldable polyesters were investigated using a Rheometer operated at 1 Hz. Below Tg, the incorporation of TS units into PES results in the decline of storage modulus. Above Tg, the effect of crystallinity on the storage modulus can be found.  相似文献   

19.
To increase the thermal and mechanical properties of the aliphatic polyester poly(butylene succinate) (PBS), a series of potentially biodegradable liquid crystalline aromatic/aliphatic random copolyesters were prepared by melt polycondensation of new mesogenic monomers dimethyl 4,4′-(terephthaloyldioxy) dibenzoate (MTB), dimethyl succinate, and 1,4-butanediol. The synthesized copolyesters were characterized by means of proton nuclear magnetic resonance spectroscopy (1H NMR), gel permeation chromatography (GPC), viscosity measurements, differential scanning calorimetry (DSC), thermogravimetry (TG), X-ray diffraction (XRD), polarizing light microscopy (PLM) and mechanical property measurements. The MTB content was varied so that the effects of the mesogen content on the thermal and mechanical properties, degradable behaviours and mesophase were examined. It was found that introducing the rigid rod mesogens could increase the thermal stability and the mechanical properties, while it reduced the melting temperature (Tm), the crystallization temperature (Tc), the degree of relative crystallinity (Xc) and the hydrolytic degradation rate. Only the homopolyester poly(butylenes terephthaloyldioxy dibenzoates) was able to show the schlieren texture characteristic of nematics.  相似文献   

20.
Biodegradation and hydrolysis rate of aliphatic aromatic polyester   总被引:2,自引:0,他引:2  
The biodegradation and hydrolysis rates of an aliphatic aromatic copolyester were measured in manure, food, and yard compost environments and in phosphate buffer solution (pH = 8.0) and vermiculite at 58 °C. Mineralization, molecular weight reduction, and structural changes determined by DSC, FTIR, and 1H NMR were used as indicators of the biodegradation and hydrolysis rates. Poly(butylene adipate-co-terephthalate), PBAT, film biodegraded at distinctive rates in manure, food, and yard compost environments having different microbial activities. The highest biodegradation rate was found in manure compost, which had the highest CO2 emissions and lowest C/N ratio. The possible presence of extracellular enzymes in manure and food composts may facilitate the hydrolytic reaction since greater molecular weight reduction rates were observed in these composts. 1H NMR and thermal analysis revealed that, while PBAT is a semi-crystalline copolyester with cocrystallization of BT and BA dimers, the soft aliphatic domain (BA) and the amorphous region are more susceptible to hydrolysis and biodegradation than the rigid aromatic domain (BT) and the crystalline region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号