首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenate adsorption on amorphous (RuO(2)1.1H(2)O) and crystalline (RuO(2)) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was used to determine the local coordination environment of adsorbed arsenate. Additionally, pressure-jump (p-jump) relaxation spectroscopy was used to investigate the kinetics of arsenate adsorption/desorption on ruthenium oxides. Chemical relaxations resulting from the induced pressure change were monitored via electrical conductivity detection. EXAFS data were collected for two initial arsenate solution concentrations, 3 and 33 mM at pH 5. The collected spectra indicated a similar coordination environment for arsenate adsorbed to RuO(2)1.1H(2)O for both arsenate concentrations. In contrast the EXAFS spectra of RuO(2) indicated differences in the local coordination environments for the crystalline material with increasing arsenate concentration. Data analysis indicated that both mono- and bidentate surfaces complexes were present on both RuO(2)1.1H(2)O and RuO(2). Relaxation spectra from the pressure-jump experiments of both ruthenium oxides resulted in a double relaxation event. Based on the relaxation spectra, a two step reaction mechanism for arsenate adsorption is proposed resulting in the formation of a bidentate surface complex. Analysis of the kinetic and spectroscopic data suggested that while there were two relaxation events, arsenate adsorbed to ruthenium oxide surfaces through both mono- and bidentate surface complexes.  相似文献   

2.
The trivalent metal ion (M(III)=Cm, Eu)/polyacrylic acid (PAA) system was studied in the pH range between 3 and 5.5 for a molar PAA-to-metal ratio above 1. The interaction was studied for a wide range of PAA (0.05 mg L(-1)-50 g L(-1)) and metal ion concentrations (2x10(-9)-10(-3) M). This work aimed at 3 goals (i) to determine the stoichiometry of M(III)-PAA complexes, (ii) to determine the number of complexed species and the local environment of the metal ion, and (iii) to quantify the reaction processes. Asymmetric flow-field-flow fractionation (AsFlFFF) coupled to ICP-MS evidenced that size distributions of Eu-PAA complexes and PAA were identical, suggesting that Eu bound to only one PAA chain. Time-resolved laser fluorescence spectroscopy (TRLFS) measurements performed with Eu and Cm showed a continuous shift of the spectra with increasing pH. The environment of complexed metal ions obviously changes with pH. Most probably, spectral variations arose from conformational changes within the M(III)-PAA complex due to pH variation. Complexation data describing the distribution of complexed and free metal ion were measured with Cm by TRLFS. They could be quantitatively described in the whole pH-range studied by considering the existence of only a single complexed species. This indicates that the slight changes in M(III) speciation with pH observed at the molecular level do not significantly affect the intrinsic binding constant. The interaction constant obtained from the modelling must be considered as a mean interaction constant.  相似文献   

3.
The complexation of uranyl ions with lipopolysaccharide (LPS), the main component of the cell wall of Gram-negative bacteria, was investigated on a molecular level with U L(III)-edge extended X-ray absorption fine structure (EXAFS) and attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy over a wide pH range (2.6 to 7.0). For the first time, structural determinations of uranyl complexes with cell wall compounds were extended from acidic up to neutral pH. The main functionalities responsible for uranyl binding are phosphoryl and carboxyl groups. At an excess of LPS, related to environmental conditions, the uranyl ion is mainly complexed by phosphoryl groups four-fold monodentately coordinated in the equatorial plane of the uranyl dioxo cation UO(2)(2+) showing great homologies to the uranyl mineral phase meta-autunite in the EXAFS spectra. At equimolar ratios of uranyl and functional groups of LPS, according to a slight deficit of phosphoryl groups, additional carboxyl coordination in a bidentate manner becomes important as it is shown by IR spectroscopy. From the vibrational spectra, a mixed coordination of UO(2)(2+) with both phosphoryl and carboxyl groups is derived. The coordination of uranyl ions to the LPS molecule is obviously mainly controlled by the U/LPS concentration ratio, and the influence of pH is only of minor significance at the investigated range.  相似文献   

4.
5.
SiO(2)-supported clusters of tantalum were synthesized from adsorbed Ta(CH(2)Ph)(5) by treatment in H(2) at 523 K. The surface species were characterized by X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES)) and ultraviolet-visible spectroscopy. The EXAFS data show that SiO(2)-supported tantalum clusters were characterized by a Ta-Ta coordination number of approximately 2, consistent with the presence of tritantalum clusters, on average. When these were reduced in H(2) and reoxidized in O(2), the cluster nuclearity remained essentially unchanged, although reduction and oxidation occurred, respectively, as shown by XANES and UV-vis spectra; in the reoxidation, the tantalum oxidation state change was approximately two electronic charges per tritantalum cluster. The data demonstrate an analogy between the chemistry of group 5 metals on the SiO(2) support and their chemistry in solution, as determined by the group of Cotton.  相似文献   

6.
The number of water molecules in the inner-sphere (N(H2O)) was determined for Eu(III) and the strength of ligand field (R(E/M)) was evaluated for a variety of coordination environments from the luminescence lifetime and the relative intensity at 615 nm and at 592 nm, by time-resolved laser-induced fluorescence spectroscopy. When R(E/M) and deltaN(H2O) for Eu(III) with a known coordination environment were plotted clear regularity was apparent between the location of the R(E/M)-deltaN(H2O) plot and the coordination environment of Eu(III). Here, deltaN(H2O) was calculated by use of the equation, deltaN(H2O)=9-N(H2O). Unknown coordination environments of Eu(III) can, in turn, be characterized, including both the inner- and the outer-sphere, simply by plotting R(E/M) and deltaN(H2O) for Eu(III) on the diagram. This empirical method is effective for prediction of the coordination environment of hydrated and complexed Eu(III) in solutions and that of the adsorbed Eu(III) on ion-exchange resins and by microorganisms.  相似文献   

7.
Lanthanide complexes of Schiff bases (SBs) with 1:1 and 1:2 (M:Lig) stoichiometric ratios were prepared by condensation of pyridoxal (PL) and aspartic acid (Asp) or l-histidine (His), respectively, in the presence of the appropriate metal chloride as a templating agent. These complexes were studied by optical spectroscopy and single crystal X-ray diffraction techniques. Crystallographic studies of 1:1 ([Eu(PL-Asp)(H(2)O)(4)](H(2)O)) and 1:2 ([Eu(PL-His)(2)(H(2)O)(2)]Cl(H(2)O)(4)) complexes show that Eu(III) is eight-coordinate in both structures, in a distorted square antiprism environment formed by the phenolic oxygen of PL, the nitrogen atom of carbon-nitrogen double bond, oxygen atoms of the carboxylate groups of His or Asp, and oxygen atoms of the water molecules. The main species formed in aqueous solutions containing these SBs have been determined by analysis of the luminescence spectra, lifetimes of Eu(III) excited states and vibronic interaction as well as structural features of the Eu(III) coordination sphere. Possible tetradentate coordination function of SBs in aqueous solutions with relatively high concentrations as well as the potential application of the lanthanide SB complexes as new luminescence materials are discussed.  相似文献   

8.
Andres J  Chauvin AS 《Inorganic chemistry》2011,50(20):10082-10090
Three 6-phosphoryl picolinic acid (6PPA) derivatives were synthesized and used as europium and terbium sensitizers. Two of the three ligands (6-diethoxyphosphoryl picolinic acid (Hdeppa) and 6-monoethoxyphosphoryl picolinic acid (H(2)meppa)) are water-soluble, once complexed to lanthanide ions, while the third (6-dihydroxyphosphoryl picolinic acid (H(3)dhppa)) forms a precipitate. The stability constants of the phosphoryl-based complexes were found to be higher than the carboxylate analogue (dipicolinic acid, H(2)dpa). The main species are the [LnL(3)] complexes under strict stoichiometric conditions, confirmed by (31)P NMR spectroscopy, mass spectrometry and lifetime analyses. The photophysical measurements reveal that the emission intensity of [Eu(deppa)(3)] is maximal at pH 4.8, whereas for [Eu(meppa)(3)](3-), the optimum pH is observed at 9.0. The lifetimes are all in the millisecond range and have confirmed the absence of water molecules in the first coordination sphere. The emissions of the terbium are always brighter than the corresponding europium within this phosphoryl series. The quantum yields of the phosphoryl containing complexes are lower than the carboxylate analogue ([Ln(dpa)(3)](3-)), except for [Tb(deppa)(3)], which exhibits an interesting quantum yield of 40% in aqueous solution.  相似文献   

9.
The local structures of Ga(III) in aqueous oxalate and malonate complexes were studied by means of Ga K-edge EXAFS spectroscopy. Irrespective of the number and type of coordinated ligands, the EXAFS results showed very regular first coordination shells consisting of six oxygen atoms. Scattering paths from more distant atoms revealed that both oxalate and malonate form mononuclear chelate structures where one oxygen from each carboxylate group binds to Ga(III). Again, very little variation in bond distances and no changes in coordination modes were detected as the number of ligands coordinated to Ga(III) was varied. Based on the very close resemblance of IR spectra of oxalate and malonate complexes of Al(III), and the corresponding complexes of Ga(III), it is believed that the local structures of the Al(III) complexes are similar to those of the Ga(III) complexes in terms of ligand coordination modes and distortions. This conclusion was corroborated by results from theoretical frequency calculations.  相似文献   

10.
The method of enhanced Rayleigh scattering spectroscopy (ERS) was developed to investigate the complexation of poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) in semidilute polymer solutions. Based on the Ornstein‐Zernike equation, the relationship between macromolecular static correlation length and ERS intensity was presented. Moreover, the ERS spectra were calculated by the moving window two‐dimensional (MW2D) correlation spectroscopy to get detailed information of the polymer complexation. The results indicated that the ERS spectroscopy characteristics of the polymer mixtures have similar trend, and the ERS intensity promptly increases as the macromolecular chains contract. The increase of ERS intensity showed that the degree of complexation between PAA and PEO increases when the pH value decreases. The complexation results from the collapse of macromolecular chains, which is induced by the PAA chains contracting and the enhanced association between PAA and PEO chains because of the hydrogen bond formation. In addition, the association resulting from the complexation of PAA and PEO in solution was demonstrated by the MW2D correlation spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1847–1852, 2010  相似文献   

11.
The complexes of trivalent actinide curium (Cm(III)) with di(chlorophenyl)dithiophosphinic acid ((ClPh)2PSSH) and three different neutral complexing agents as synergists in tert-butylbenzene are studied by EXAFS and time-resolved laser fluorescence spectroscopy (TRLFS). The results are compared with those from the corresponding europium (Eu(III)) complexes. The aim of these investigations is to understand the chemical interactions responsible for the high selectivity of the synergistic systems of (ClPh)2PSSH and neutral complexing agents tri-n-octylphosphine oxide, tributylphosphate and tris(2-ethylhexyl)phosphate for trivalent actinide cations in liquid-liquid extraction. In our structural chemistry study, we find that the inner coordination sphere of extracted Cm(III) and Eu(III) complexes are different. In all complexes the (ClPh)2PSSH is bound to the metal cation in a bidentate fashion and the oxygen donor of the neutral complexing agent used as synergist is directly coordinated to the metal cation. Comparison of the Cm(III) and Eu(III) complexes shows that Cm(III) preferentially binds to the sulfur of (ClPh)2PSSH, whereas Eu(III) is preferentially bound to oxygen. A good selectivity in liquid-liquid extraction is correlated with a high ratio of the sulfur coordination number to oxygen coordination number. This leads to the conclusion that the observed differences in the coordination structure between Cm(III) and Eu(III) complexes play an important role in the selectivity of these extraction systems.  相似文献   

12.
The surface geometry of (RS)-phenylsuccinic acid molecule was studied by analysis of the SERS spectra of aromatic dicarboxylic acid adsorbed on silver colloid surfaces. For a reliable analysis of the SERS spectrum, we also performed density functional theoretical calculations. The SERS spectral features indicated that the RSPSA molecules should bound to the silver as dicarboxylate, with a strongly tilted orientation with respect to the normal to the surface. Such a tilted orientation was presumed to occur by the simultaneous sigma and pi-type coordination of carboxylate groups to silver surface caused by the steric hindrance and electrostatic repulsion between the two carboxylate groups, and thereby RSPSA on silver was easily displaced with aromatic carboxylic acids. A sigma-type coordination therefore seemed to be more important than a pi-type coordination for aromatic carboxylic acid derivatives to assemble on a silver surface. The large enhancement of in-plane bending, out of plane bending and ring breathing modes in the surface-enhanced Raman scattering spectrum indicates that the molecule is adsorbed on the silver surface in a 'at least vertical' configuration, with the ring perpendicular to the silver surface.  相似文献   

13.
The effects of pH,contact time and natural organic ligands on radionuclide Eu(Ⅲ) adsorption and mechanism on titanate nanotubes(TNTs) are studied by a combination of batch and extended X-ray absorption fine structure(EXAFS) techniques.Macroscopic measurements show that the adsorption is ionic strength dependent at pH < 6.0,but ionic strength independent at pH > 6.0.The presence of humic acid(HA) /fulvic acid(FA) increases Eu(Ⅲ) adsorption on TNTs at low pH,but reduces Eu(Ⅲ) adsorption at high pH.The results of EXAFS analysis indicate that Eu(Ⅲ) adsorption on TNTs is dominated by outer-sphere surface complexation at pH < 6.0,whereas by inner-sphere surface complexation at pH > 6.0.At pH < 6.0,Eu(Ⅲ) consists of ~ 9 O atoms at REu?O ≈ 2.40  in the first coordination sphere,and a decrease in NEu-O with increasing pH indicates the introduction of more asymmetry in the first sphere of adsorbed Eu(Ⅲ).At long contact time or high pH values,the Eu(Ⅲ) consists of ~2 Eu at REu-Eu ≈ 3.60  and ~ 1 Ti at REu-Ti ≈ 4.40 ,indicating the formation of inner-sphere surface complexation,surface precipitation or surface polymers.Surface adsorbed HA/FA on TNTs modifies the species of adsorbed Eu(Ⅲ) as well as the local atomic structures of adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids.Adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids forms both ligand-bridging ternary surface complexes(Eu-HA/FA-TNTs) as well as surface complexes in which Eu(Ⅲ) remains directly bound to TNT surface hydroxyl groups(i.e.,binary Eu-TNTs or Eu-bridging ternary surface complexes(HA/FA-Eu-TNTs)).The findings in this work are important to describe Eu(Ⅲ) interaction with nanomaterials at molecular level and will help to improve the understanding of Eu(Ⅲ) physicochemical behavior in the natural environment.  相似文献   

14.
In situ infrared spectroscopy has been used to investigate the adsorption of a range of simple aromatic carboxylic acids from aqueous solution to metal oxides. Thin films of TiO2, ZrO2, Al2O3 and Ta2O5 were prepared by evaporation of aqueous sols on single reflection ZnSe prisms. Benzoic acid adsorbed very strongly to ZrO2, in a bridging bidentate fashion, but showed only weak adsorption to TiO2 and Ta2O5. Substituted aromatic carboxylic acids; salicylic, phthalic and thiosalicylic, were found to adsorb to each metal oxide. Salicylic and phthalic acids adsorbed to the metal oxides via bidentate interactions, involving coordination through both carboxylate and substituent groups. Thiosalicylic acid adsorbed to the metal oxides as a bridging bidentate carboxylate with no coordination through the thiol substituent group.  相似文献   

15.
Thermodynamic parameters for the complexation of Eu(3+) with pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid, BTC) as a model system for polymerizable metal-complexing humic acids were determined using temperature-dependent time-resolved laser-induced fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC). At low metal and ligand concentrations (<50 μM Eu(3+), <1 mM BTC), a 1:1 monomeric Eu-BTC complex was identified in the range of 25-60 °C. At elevated concentrations (>500 μM Eu(3+) and BTC) a temperature-dependent polymerization was observed, where BTC monomers are linked via coordinating shared Eu(3+) ions. The two methods lead to comparable thermodynamic data (ΔH = 18.5 ± 1.5/16.5 ± 0.1 kJ mol(-1); ΔS = 152 ± 5/130 ± 5 J mol(-1) K(-1); TRLFS/ITC) in the absence of polymerization. With the onset of polymerization, TRLFS reveals the water coordination number of the lanthanide, whereas calorimetry is superior in determining the thermodynamic data in this regime. Evaluating the heat uptake kinetics, the monomer and polymer formation steps could be separated by "time-resolved" ITC, revealing almost identical binding enthalpies for the sequential reactions. Structural features of the complexes were studied by Fourier-transform infrared (FTIR) spectroscopy in combination with density functional theory (DFT) calculations showing predominantly chelating coordination with two carboxylate groups in the monomeric complex and monodentate binding of a single carboxylate group in the polymeric complex of the polycarboxylate with Eu(3+). The data show that pyromellitic acid is a suitable model for the study of metal-mediated polymerization as a crucial factor in determining the effect of humic acids on the mobility of heavy metals in the environment.  相似文献   

16.
Many attempts to obtain single crystals appropriate for X-ray diffraction analysis of the Ln(tpp)(acac) derivatives (where Ln = Gd or Sm, tpp = tetraphenylporphyrin and acac = acetylacetonate) have failed so far. A suitable way to get structural parameters for these monoporphyrinates is to use extended X-ray absorption fine structure (EXAFS) spectroscopy. We recorded spectra of the monoporphyrins, Ln(tpp)(acac) and Gd(tpyp)(acac) (where tpyp = tetrapyridylporphyrin), and the bisporphyrin GdH(tpyp)2 in the solid state. We particularly focused our structural analysis on Gd(tpp)(acac), applying both molecular modeling and EXAFS, which allowed us to get accurate results about the local environment of the central atom. The Gd3+ ion of the complex at room temperature was found to be bonded to four monoporphyrin nitrogen atoms at an average distance R(Gd-N(av)) = 2.48 A and to three or four oxygen atoms at R(Gd-O(ac,w)) = 2.38 A from an acetylacetonato anion and a water molecule. The presence of the second water molecule in the coordination sphere was barely discernible by EXAFS analysis. Molecular modeling has provided further information about the coordination core geometry of the Gd(tpp)(acac) monoporphyrinate, including a bishydrated coordination sphere. Also, it has enabled the construction of a 3D structural model on which multiple scattering analyses were attempted. Monte Carlo simulation was used to validate the adjustments. EXAFS spectra analysis was carried out on the derivatives, displaying slight distortions in the lanthanide central-atom coordination geometry.  相似文献   

17.
结合静态实验和X射线吸收精细结构谱学(EXAFS)技术研究了pH、时间、有机配体等环境因素对放射性核素Eu(III)在钛酸纳米管上的吸附行为和微观机制的影响.宏观实验结果表明:Eu(III)在钛酸纳米管上的吸附在pH<6.0条件下受离子强度影响,而在pH>6.0条件下不受离子强度影响;腐殖酸HA/FA在低pH条件下可以促进Eu(III)在钛酸纳米管上的吸附,而在高pH条件下抑制Eu(III)在钛酸纳米管上的吸附.EXAFS微观分析结果表明:在pH<6.0条件下,吸附属于外层吸附机理;在pH>6.0条件下,吸附属于内层吸附机理.pH<6.0时,中心原子Eu周围只有Eu-O一个配位层,其平均键长为2.40,配位数在9左右;随着pH逐渐升高,第一配位层的配位数下降,表明吸附Eu原子配位的对称性下降.当吸附时间延长或pH升高,吸附原子Eu周围出现了Eu-Eu和Eu-Ti第二配位层,其平均键长分别为3.60和4.40,配位数分别在2或1左右,表明形成了内层吸附产物或表面沉淀或表面多聚体.腐殖酸HA/FA的存在,可以改变Eu(III)在钛酸纳米管表面的吸附形态和微观原子结构,Eu(III)不仅可以与钛酸纳米管的表面羟基直接键合形成二元表面复合物(Eu-TNTs),还可以通过HA/FA的桥连作用形成三元表面复合物(HA/FA-Eu-TNTs).这些研究结果对于评估放射性核素Eu(III)与纳米材料在分子水平上的作用机理及分析Eu(III)在环境中的物理化学行为具有重要的意义.  相似文献   

18.
Poly(L‐lactic acid) (PLLA) was mixed with a few weight percent of magnesium or calcium hydrogen phosphate to improve the thermal property. Calcium hydrogen phosphate as an additive to PLLA was found to be more effective in increasing the glass transition point (Tg) than magnesium hydrogen phosphate, which was investigated by the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Studies on the coordination structure for the polymer complex (ca‐(plla)) confirmed by infrared (IR) spectroscopy and extended X‐ray absorption fine structure (EXAFS) indicated that calcium ion radius would be suitable for the coordination with carbonyl groups of polymer chains.  相似文献   

19.
X-ray absorption spectroscopy (XAS) has become a prominent tool for the element-specific analysis of transition metals at the catalytic center of metalloenzymes. In the present study the information content of X-ray spectra with respect to the nuclear geometry and, in particular, to the electronic structure of the protein-bound metal ions is explored using the manganese complex of photosystem II (PSIII) as a model system. The EXAFS range carries direct information on the number and distances of ligands as well as on the chemical type of the ligand donor function. For first-sphere ligands and second-sphere metals (in multinuclear complexes), the determination of precise distances is mostly straightforward, whereas the determination of coordination numbers clearly requires more effort. The EXAFS section starts with an exemplifying discussion of a PSII spectrum data set with focus on the coordination number problem. Subsequently, the method of linear dichroism EXAFS spectroscopy is introduced and it is shown how the EXAFS data leads to an atomic resolution model for the tetra-manganese complex of PSII. In the XANES section the following aspects are considered: (1) Alternative approaches are evaluated for determination of the metal-oxidation state by comparison with a series of model compounds. (2) The interpretation of XANES spectra in terms of molecular orbitals (MOs) is approached by comparative multiple-scattering calculations and MO calculations. (3) The underlying reasons for the oxidation-state dependence of the XANES spectra are explored. Furthermore, the potential of modern XANES theory is demonstrated by presenting first simulations of the dichroism in the XANES spectra of the PSII manganese complex.  相似文献   

20.
Oxidative fragmentation of the clusters Os(3)(CO)(12) adsorbed on MgO powder was investigated by X-ray absorption spectroscopy and scanning transmission electron microscopy (STEM). Exposure of the clusters to air leads to their fragmentation, oxidation of the osmium, and formation of ensembles consisting of three Os atoms. X-ray absorption near-edge spectra demonstrate the oxidative nature of the fragmentation process. Extended X-ray absorption fine structure (EXAFS) spectra indicate an average Os-Os distance of 3.33 Angstrom and an Os-Os coordination number of 2, consistent with the formation of ensembles of three Os atoms on the support. STEM images confirm the presence of such trinuclear ensembles, and the diameters of the observed scattering centers (6.0 Angstrom) match that indicated by the EXAFS results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号