首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 676 毫秒
1.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

2.
The macrocyclic compound, [1,2-C2B10H10-1,4-C6H4-1,7-C2B10H10-1,4-C6H4]2 (5)—a novel cyclooctaphane, was prepared by condensation of the C,C′-dicopper(I) derivative of meta-carborane with 1,2-bis(4-iodophenyl)-ortho-carborane. The X-ray crystal structure of 5·C6H6·6C6H12 was determined at 150 K, revealing an extremely loose packing mode. Molecule 5 has a crystallographic Cs and local C2v symmetry; the macrocycle adopts a butterfly (dihedral angle 143°) conformation with the ortho-carborane units at the wingtips and the phenylene ring planes roughly perpendicular to the wing planes. Multinuclear NMR spectra suggest that molecule 5 in solution inverts rapidly via the planar D2h geometry, which (from ab initio HF/6-31G* calculations) is only 1 kcal mol−1 higher in energy than the C2v one. An attempt to prepare an even larger macrocycle, comprising three para-carborane and three ortho-carborane units linked by six para-phenylene units, was unsuccessful.  相似文献   

3.
The preparation and properties as well as some reactions of a series of arylcarbonylbis(triphenylphosphine)iridium(I) complexes [Ir(Ar)(CO)(PPh3)2] (Ar = C6H5, C6F5, 2-C6H4CH3, 3-C6H4CH3, 4-C6H4CH3, 2-C6H4OCH3, 2,6-C6H3-(OCH3)2, 4-C6H4N(CH3)2, 3-C6H4Cl, 4-C6H4Cl, 4-C6H4Cl, 3-C6H4CF3, 4-C6H4CF3) are described, and the most important IR data as well as the 31P NMR parameters of these, without exception trans-planar, compounds are given.

Some of the complexes react with molecular oxygen to form well defined dioxygen adducts [Ir(Ar)(O2)(CO)(PPh3)2] (Ar = C6H5, 3-C6H4CH3, 4-C6H4CH3). Complexes with ortho-substituted aryl ligands are not oxygenated. This effect is referred to as a steric shielding of the metal center by the corresponding ortho-substituents. With SO2 the similar irreversible addition compound [Ir(4-C6H4CH3)-(SO2)(CO)(PPh3)2] is obtained. Sulfur dioxide insertion into the Ir---C bond cannot be observed.

The first step of the reaction between [Ir(4-C6H4CH3)(CO)(PPh3)2] and hydrogen chloride involves an oxidative addition of HCl to give [Ir(H)(Cl)(4-C6-H4CH3)(CO)(PPh3)2]. Ir---C bond cleavage by reductive elimination of toluene from the primary adduct does not occur except at elevated temperature.  相似文献   


4.
New experimental data were published in literature regarding CCl4, C2HCl3 and C2H5Cl decomposition in dry air under electron beam influence. Taking into account experimental data theoretical models of those species decomposition were established and computer simulations were performed by the authors of this work to find the kinetics of such processes. The results of the calculations and experimental data show that CCl4 decomposition depends on delivered dose and initial CCl4 concentrations. The calculation revealed that recombination of CCl+4 and Cl is the source of CCl3 radicals and that reaction may have an important role in the process of CCl4 decomposition. A theoretical model of C2HCl3 decomposition in dry air under electron beam influence describes the decay of C2HCl3 and the formation of several products such as Cl2, CCl2O, CO, CO2, HCl and C2HCl3O. The detailed comparison of experimental and theoretical data shows relatively good agreement in efficiency of C2HCl3 decomposition process, but it can be achieved only with an assumption that the relation between rate constants of C2HCl4O intermediate product decomposition (C2HCl3O+Cl and COCl2+CHCl2) should be around 20 and C2HCl3O oxidation rate should be not lower than 7.5×10−11 cm3/mols. All those rate constants are not yet established experimentally. The results of the calculation of C2H5Cl decomposition and the data obtained experimentally were compared. The temperature, gas pressure, initial C2H5Cl concentration and dose range were equal in both cases. An elaborated model allow us to obtain quantitatively similar results as the experiments, but the degree of C2H5Cl decomposition for certain dose levels is significantly higher in experimental data. It is quite probable that some important processes have not been included to the theoretical model.  相似文献   

5.
采用自制的新型双苯并环己酮芳亚胺镍催化剂双苯并环己酮-2,6-二甲基苯亚胺镍(Ⅱ)(Ni{C10H8(O)C[2,6-C6H3(CH3)2N]CH3}2, C1)和双苯并环己酮-2,6-二氯苯亚胺镍(Ⅱ)(Ni{C10H8(O)C[2,6-C6H3Cl2N]CH3}2, C2)与三五氟苯硼[B(C6F5)3]结合, 在一定的反应条件下可高效催化降冰片烯(NB)与甲基丙烯酸正丁酯(n-BMA)的乙烯基加成共聚合. 提出了催化聚合时存在的可能失活机理; 研究了不同单体投料比对催化活性、 产率及产物性能的影响. 根据Kelen-Tüdõs方法分别估算出2种单体在不同催化体系下的竞聚率, 即当催化体系为C1/B(C6F5)3时, 竞聚率rn-BMA=0.02, rNB=16.28, rNB·rn-BMA=0.32; 当催化体系为C2/B(C6F5)3时, rn-BMA=0.01, rNB=64.83, rNB·rn-BMA=0.65. 结果表明, 2种单体在2种体系催化下均为无规共聚合.  相似文献   

6.
Thermodynamic properties of binary systems of C60 with 1,2- and 1,3-dibromobenzenes have been studied by means of differential scanning calorimetry (DSC). Solid solvates with the compositions C603(1,2-C6H4Br2); C602(1,3-C6H4Br2) and C600.6(1,3-C6H4Br2) have been found. The solvates have been characterised by their enthalpies and temperatures of incongruent melting transition and in part by X-ray powder data. It has been shown that positional isomers 1,2- and 1,3- of the substituted benzenes formed two series of “typical” phase diagrams. Solubility behaviour of C60 in positional isomers has been discussed.  相似文献   

7.
The synthesis, characterization and mesogenic properties of Schiff base compounds arising from the reaction of 4-alkoxybenzaldehydes with 4-aminothiophenol or 4-bromoaniline are described. Whereas the Schiff base thiol with two benzene rings in the molecule, HSC6H4NC(H)C6H4OC16H33 (2), is non-mesogenic, the bromo analogue, BrC6H4NC(H)C6H4OC16H33 (3), is mesogenic. The introduction of a third benzene ring into the molecular architecture of 2 and 3 produced thiol- and bromo-Schiff base compounds, HSC6H4NC(H)C6H4OC(O)C6H4OC16H33 and BrC6H4NC(H)C6H4OC(O)C6H4OC16H33, respectively, that are both mesogenic. The thiol compounds react with nickelocene to form [(η 5-C5H5)Ni(μ 2-SC6H4NC(H)C6H4OC16H33)]2 and [(η 5-C5H5)Ni(μ 2-SC6H4NC(H)C6H4OC(O)-C6H4OC16H33)]2, but the nickel complexes are not mesogenic.  相似文献   

8.
The synthesis of the 2-bromocyclooctenyl selenides, C8H12(Br)SeR (3a: R = Me; 3b: R = Et; 3c: R = CH2Ph), and the 2-bromocyclohexenyl selenides, C6H8(Br)SeR (4a: R = Me; 4b: R = Et; 4c: R = CH2Ph), is described. Compounds 3a–e and 4a, b react with K2PtCl4 to yield square planar platinum (II) complexes of the form trans-PtL2Cl2 (5a: L = 3a; 5b: L = 3b; 5c: L = 3c; 6a: L = 4a; 6b: L = 4b). The analogous palladium(II) complex trans-PdL2Cl2 (7c: L = 4c) has been prepared from Pd(C6H5CN)2Cl2. All new compounds have been characterised by NMR, infrared and mass spectroscope and microanalysts. Complexes 5a–c, 6a, b and 7c exist as a racemic mixture of two diastereoisomers related by inversion at selenium. NMR spectroscope shows that interconversion between these two isomers is slow for 5a–e, but faster for 6a, b and 7c.  相似文献   

9.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

10.
The complexes [Fe{η-C5H4---(E)---CH=CH---4-C6H4CCX}2] [X=SiMe3 (1), H (2), Au(PCy3) (3), Au(PPh3) (4), Au(PMe3) (5), RuCl(dppm)2 (7), RuCl(dppe)2 (8)] and [Fe{η-C5H4---(E)---CH=CH---4-C6H4CH=CRuCl(dppm)2}2](PF6)2 (6) have been prepared and the identities of 1 and 7 confirmed by single-crystal X-ray structural studies. Complexes 1–8 exhibit reversible oxidation waves in their cyclic voltammograms attributed to the FeII/III couple of the ferrocenyl groups, 6–8 also showing reversible (7, 8) or non-reversible (6) processes attributed to Ru-centered oxidation. Cubic nonlinearities at 800 nm by the Z-scan method are low for 1–5; in contrast, complexes 6 and 7 exhibit large negative γreal and large γimag values. A factor of 4 difference in γ and two-photon absorption cross-section σ2 values for 6 and 7 suggest that they have potential as protically switchable NLO materials.  相似文献   

11.
硫代嘧啶碱基是光动力疗法潜在的重要光敏剂,其最低单重激发态的光物理研究已有广泛报道。然而,其较高激发态的跃迁性质和反应动力学研究较为稀少。因此,本文采用共振拉曼光谱和密度泛函理论计算方法研究2,4-二硫代尿嘧啶的紫外光谱和几个较高单重激发态的短时结构动力学。首先,基于共振拉曼光谱强度与电子吸收带振子强度f的关系,将紫外光谱去卷积成四个吸收带,分别为358 nm(f=0.0336)中等强度吸收带(A带),338 nm(f=0.1491)、301 nm(f=0.1795)和278 nm(f=0.3532)强而宽的吸收带(B、C和D带)。这一结果既吻合密度泛函理论计算结果,又符合共振拉曼光谱强度模式对紫外光谱带的预期。据此,去卷积得到的四个吸收带被分别指认为S0→S2跃迁、S0→S6跃迁、S0→S7跃迁和S_0→S_8跃迁。同时,分别对B,C和D带共振拉曼光谱进行了详细的指认,获得了短时动力学信息。结果表明,S_8态短时动力学的显著特征是在Franck-Condon区域或附近发生了S8(ππ~*)/S(nπ~*)势能面交叉引发的、伴随超快结构扭转的非绝热过程。S7和S6态短时动力学的主要特征是反应坐标的多维性,它们分别沿C_5C_6/C_2S_8/C_4S_(10)/N_2C_3+C_4N_3H_9/N_1C_2N_3/C_2N_1C_6/C_6N_1H_7/C_5C_6H_(12)和C_5C_6/N_3C_2/C_4S_(10)/C_2S_8+C_6N_1H_7/C_5C_6H_(12)/C_5C_6N_1/C_5C_6H_(12)/C_2N_1C_6/N_1C_2N_3/C_4N_3H_9/N_1C_2N_3等内坐标演化。  相似文献   

12.
Treatment of 1,2-trans-C5H8(PCl2)2 with 1,2-C2H4(NHPr-i)2 gave the C2-symmetric perhydro-1,6,2,5-diazaphosphocine C5H8{P(Cl)N(Pr-i)CH2}2-cyclo, which produced dissymmetric C5H8(PPh2){P[N(Pr-i)CH2]2-cyclo} on further reaction with PhMgBr. Cleavage of the P---N bonds with gaseous HCl afforded C5H8(PPh2)(PCl2), which was converted to C5H8(PPh2){P(OPh)2}2 by reaction with phenol. All chiral P,P derivatives were obtained as racemates as well as resolved (1R,2R)- and (1S,2S)-enantiomers.  相似文献   

13.
Liquid crystalline 4-XC6H4N=NC6H4X-4′ [X = C4H9 (1a), C1OH21 (1b), OC4H9 (1c), OC8H17(1d)] can be easily prepared in high yields from the corresponding anilines. In order to study the influence of metals on the thermal properties of these materials, we have obtained adducts [AuCl 3(4-C4H9OC6H4N=NC6H4OC4H9-4′)] (2) and [Ag(OC1O3)L2] [L = 4-XC6H4N=NC6H4X-4′; X = OC4H, (3a), OC8H17 (3b)]. The silver adducts show themotropic behaviour. Mercuriation of dialkylazobenzenes 1a-b takes place with [Hg(OAc)2] and LiCl to give [Hg(R)Cl] [R = C6H3(N=NC6H4X-4′)-2, X-5; X = C4H9 (bpap) (4a), C10H21 (dpap) (4b)] while dialkoxyazobenzenes 1c–d require [Hg (OOCCF3)2] to obtain [Hg(R)Cl] [R = C6H3(N---NC6H4X-4′)-2, X-5; X = OC4H9 (bxpap) (4c), OC 8H17 (4d)]. 4a-c react with NaI to give [HgR2] [R= bpap (5a), dpap (5b), bxpap (5c), oxpap (5d)l. Both chloroaryl-, 4a and 4c, and diaryl-mercurials, 5a and 5c, act readily as transmetailating agents towards [Me4N] [AuCl4] in the presence of [Me4N]Cl to give [Au(η2-R)Cl2] [R = bpap (6a), bxpap (6b)]. After reaction of [AuCl 3(tht)] (tht = tetrahydrothiophene) with [Me4N]Cl and 4b (1:2:1), [Me4N][Au(dpap)Cl3] (7) can be isolated. C---H activati bxpap (8b)]. None of the complexes 4–8 shows mesomorphic behaviour.  相似文献   

14.
运用密度泛函理论研究了(1,3,5-C3P3H3)M和(1,3,5-C3P3H3)2M (M=Ti,V,Cr)的结构、键合能以及芳香性.结果表明:低自旋的(1,3,5-C3P3H3)M和(1,3,5-C3P3H3)2M基态结构分别具有C3v和D3h对称性.金属与配体间为共价作用,二者之间存在σ、π和σ三种成键方式.V的三明治配合物的解离方式与Ti和Cr的三明治配合物不同,前者为分步解离,后两者则为一步解离.其中(1,3,5-C3P3H3)2Cr(D3h)的第一解离能最大,配合物最稳定.这些三明治和半三明治配合物都具有中心芳香性、内芳香性和外芳香性,且中心芳香性均大于自由配体(1,3,5-C3P3H3)的中心芳香性,芳香性主要贡献来源于π键和金属原子的孤对电子.内芳香性按照Ti、V、Cr的顺序依次增大,且内芳香性明显要大于外芳香性.高自旋的半三明治(1,3,5-C3P3H3)Ti(C3,5A1)与单重态(1,3,5-C3P3H3)Ti (C3v,1A1)相比,配体的变形性增大,稳定性增加,且C平面中心芳香性和内芳香性均增大,但P平面的中心芳香性却降低.  相似文献   

15.
The pyrolysis mechanism of important intermediate 1-hexene of carbon matrix precursor cyclohexane was studied theoretically. Possible reaction paths were designed based on the potential surface scan and electron structure of the initial C–C bond breaking reactions. Thermodynamic and kinetic parameters of the possible reaction paths were computed by UB3LYP/6-31+G* at different temperature ranges. The results show that 1-hexene pyrolyzes at 873 K. When below 1273 K, the major reaction paths are those that produce C3H4, and above 1273 K, the major reaction paths are those that produce C3H3 from the viewpoint of thermodynamics. From the viewpoint of kinetics, the major product is C3H3, it results from the pyrolysis reaction of 1-hexene cracking bond C3–C4 and generating C3H5 and C3H7 with the activation energy ΔE0θ=296.32 kJ/mol. Kinetic results also show that product C3H4 accompany simultaneously, which is the side reaction starting from the pyrolysis of 1-hexene forming C4H7 and C2H5 with the activation energy of 356.73 kJ/mol. When reaching 1473 K, the rate constant of the rate-determining steps of these two reaction paths do not show much difference, which means both the reaction paths exist in the pyrolysis process at the high temperature. The above results are basically in accordance with mass spectrum analysis and far more specific.  相似文献   

16.
[1,8-C10H6(NR)2]TiCl2 (3; R=SiMe3, SiiBuMe2, SiiPr3) complexes have been prepared from dilithio salts [1,8-C10H6(NR)2]Li2 (2) and TiCl4 in diethyl ether in moderate yields (60–63%). These complexes showed significant catalytic activities for ethylene polymerization and for ethylene/1-hexene copolymerization in the presence of methylaluminoxane (MAO), methyl isobutyl aluminoxane (MMAO), AliBu3– or AlEt3–Ph3CB(C6F5)4 as a cocatalyst. The catalytic activities performed in heptane (cocatalyst MMAO) were higher than those carried out in toluene (cocatalyst MAO): 709 kg-PE/mol-Ti·h could be attained for ethylene polymerization by using [1,8-C10H6(NSiiBuMe2)2]TiCl2–MMAO catalyst system.  相似文献   

17.
The substitution reactions of XC6H4COCl [X=2-, 3-, or 4-CH3; 2-, 3-, or 4-CH3O; 2-, or 4-I; or 2-, 3-, or 4-NO2] and YC6H4COONa [Y=2-, 3-, or 4-CH3; 2-, 3-, or 4-CH3O; 2-I; 4-NO2; or H] in a two-phase H2O/CH2Cl2 medium using pyridine-1-oxide (PNO) as an inverse phase transfer catalyst were investigated. In general, the kinetics of the reaction follows a pseudo-first-order rate law, with the observed rate constant being a linear function of the concentration of PNO in the water phase. In contrast to other analogous reactions, the hydrolysis reaction of 2-, 3-, or 4-NO2C6H4COCl in H2O/CH2Cl2 medium is catalyzed considerably by PNO and reaches an equilibrium. In the PNO-catalyzed reaction of XC6H4COCl and XC6H4COONa in H2O/CH2Cl2 medium, the order of reactivities of XC6H4COCl toward reaction with PNO in CH2Cl2 is 2-IC6H4COCl>4-IC6H4COCl>(C6H5COCl,3-CH3OC6H4COCl)>3-CH3C6H4COCl>(2-CH3C6H4COCl,4-CH3C6H4COCl)>4-CH3OC6H4COCl>2-CH3OC6H4COCl. Combined with the results of other analogous reactions, good Hammett correlations with positive reaction constant were obtained for the meta- and para-substituents, which supports that the XC6H4COCl–PNO reaction in CH2Cl2 is a nucleophilic substitution reaction.  相似文献   

18.
In situ reaction of Li[closo-1-Ph-1,2-C2B10H10] with 7-azabicyclo [4.1.0] heptane results in the formation of the disubstituted carborane, closo-1-Ph-2-(2′-aminocyclohexyl)-1,2-C2B10H10 (1), in 63% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol produces the cage-opened nido-carborane, K[nido-7-Ph-8-(2′-aminocyclohexyl)-7,8-C2B9H10] (2), in 80% yield. Deprotonation of the above monoanion with two equivalents of n-butyllithium followed by reaction with anhydrous MCl4 · 2THF (M = Zr, Ti) provides d0-half-sandwich metallocarboranes, closo-1-M(Cl)-2-Ph-3-(2′-σ-(H)N-cyclohexyl)-2,3-η5-C2B9H9 (3 M = Zr; 4 M = Ti) in 53% and 42% yields, respectively. The reaction of Li[closo-1,2-C2B10H11] with 7-azabicyclo [4.1.0] heptane in THF affords closo-1-(2′-aminocyclohexyl)-1,2-C2B10H10 (5) in 59% yield. Immobilization of the carboranyl amino ligand (1) to an organic support, Merrifield’s peptide resin (1%), has been achieved by the reaction of the sodium salt of (5) with polystyryl chloride in THF to produce closo-1-(2′-aminocyclohexyl)-2-polystyryl-1,2-C2B10H10 (6) in 87% yield. Further reaction of the dianion derived from (6) with anhydrous ZrCl4 · 2THF led to the formation of the organic polystyryl supported d0-half-sandwich metallocarborane, closo-1-Zr(Cl)-2-(2′-σ-(H)N-cyclohexyl)-3-polystyryl-2,3-η5-C2B9H9 (7), in 38% yield. These new compounds have been characterized by elemental analyses, NMR, and IR spectra. Polymerizations of both ethylene and vinyl chloride with (3) and (7) have been performed in toluene using MMAO-7 (13% ISOPAR-E) as the co-catalyst. Molecular weights up to 32.8 × 103 (Mw/Mn = 1.8) and 9.5 × 103 (Mw/Mn = 2.1) were obtained for PE and PVC, respectively.  相似文献   

19.
用分子力学方法对一些金属汞化合物进行了探讨和研究.通过与参考体系对比以及内旋转势垒计算的方式,说明了在诸如cis-ClHgCHCHCl(Ⅰ),o-C6H4HgCl2(Ⅵ),Cl_Hg_CH2_CH2_CN(Ⅶa),Cl_Hg_CH2_CH2_C6H5(Ⅺa)分子中,非相邻的Cl,Hg原子间存在着弱相互作用.  相似文献   

20.
The complexes [Zn2(S2CTR)4] (T = 2,5-disubstituted thiophene, R = C4H9 (1), C6H13 (2), C8H17 (3), C12H25 (4) and C16H33 (5)) have been synthesized and their structural features investigated. Compared to the analogous dithiobenzoate complexes, the crystal structure determination of 2 revealed that the thiophene induces a “step-rod” chain pattern instead of the linear, rodlike structure found for the corresponding dithiobenzoates. Complexes 1–5 did not display mesophases under thermal conditions, but an irregular melting pattern was observed for 3 and 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号