首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article introduces a newly innovative idea for preparation of superconductive ternary polymeric composites of polyamide 6 (PA6), conductive carbon black (CCB), and multiwalled carbon nanotubes (MWCNTs) with different weight ratios by a melt‐mixing technique. The complementary effects of CCB and MWCNTs at different compositions on rheological, physical, morphological, thermal, and dynamic mechanical and electrical properties of the ternary composites have been examined systematically. We have used a novel formulation to produce high‐weight fraction ternary polymer composites that show extremely higher conductivity when compared with their corresponding binary polymer composites at the same carbon loading. For example, with an addition of 10 wt % MWCNTs into the CCB/PA6 composite preloaded with 10 wt % CCB, the electrical conductivity of these ternary composites was about 5 S/m, which was 10 times that of the CCB/PA6 binary composite (0.5 S/m) and 125 times that of the MWCNT/PA6 binary composite (0.04 S/m) at 20 wt % carbon loading. The incorporation of the MWCNTs effectively enhanced the thermal stability and crystallization of the PA6 matrix in the CCB/PA6 composites through heterogeneous nucleation. The MWCNTs appeared to significantly affect the mechanical and rheological properties of the PA6 in the CCB/PA6 composites, a way notably dependent on the MWCNT contents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1203–1212, 2010  相似文献   

2.
碳纳米管改性聚苯硫醚熔纺纤维的结构与性能研究   总被引:1,自引:0,他引:1  
将多壁碳纳米管(MWCNTs)和聚苯硫醚(PPS)经过熔融挤出后制备成复合材料切片,并采用熔融纺丝法制得碳纳米管改性聚苯硫醚复合纤维.采用扫描电镜(SEM)、拉曼光谱、示差扫描量热分析(DSC)、动态机械分析(DMA)以及力学性能测试等表征手段研究了复合纤维中碳管的分散状态,与基体的界面作用,复合纤维的结晶性能以及力学性能,从而探讨了聚苯硫醚/碳纳米管复合纤维体系的微观结构与宏观性能之间的关系.研究表明,聚苯硫醚分子结构与碳纳米管之间具有的π-π共轭作用使碳管较为均匀的分散在基体中,界面结合较为紧密.同时熔融纺丝过程中的拉伸作用使碳管进一步解缠并使碳管沿纤维拉伸方向取向.另一方面,拉曼光谱显示拉伸作用有效地增强了界面作用,有利于外界应力的传递.碳管的良好分散以及强的界面作用使复合纤维力学性能得到大幅度的提高,当碳管含量达到5 wt%时,复合纤维的模量有了明显的提高,拉伸强度较纯PPS纤维提高了近220%.  相似文献   

3.
多壁碳纳米管对聚甲醛性能的影响   总被引:1,自引:1,他引:1  
将多壁碳纳米管(MWCNTs)和聚甲醛(POM)在转矩流变仪中熔融混合得到POM/MWCNT复合材料.研究了复合材料的形态,导热性能,导电性能,流变性能和结晶性能.结果表明,MWCNTs在没有经过处理的情况下能够均匀地分散在POM基体中;当向POM中添加1.0 wt%含量MWCNTs时,复合材料的导热系数上升到0.5289 W/(K m),比纯POM的导热系数0.198 W/(K m)提高1.5倍,通过有效介质方法(EMA)验证了体系导热系数提高幅度不大的原因是MWCNTs与POM之间形成了很高的界面热阻;当MWCNTs的含量为1.0 wt%时,体系产生了导电逾渗效应,逾渗值在0.5 wt%~1.0 wt%之间;MWCNTs对POM有显著的成核作用,当向POM中添加0.5 wt%含量的MWCNTs时,POM的结晶温度提高6℃左右,但当MWCNTs的添加量进一步增加时,结晶温度几乎不再变化,成核效果呈现"饱和"状态.另外,材料的复数黏度,储能模量和损耗模量随MWCNTs含量的增加而增加.  相似文献   

4.
The electrical conductivity of polymer/multi-walled carbon nanotubes (MWCNTs) composites in a powder and in a hot-pressed compacted state, prepared by mechanical mixing, was studied. The semicrystalline ultrahigh molecular weight polyethylene (UHMWPE) was used as a polymer matrix. The data clearly evidence the presence of a percolation threshold φc at a very small volume fraction of the MWCNTs φ in a polymer matrix, φc ≈ 0.0004-0.0007. The ultralow percolation threshold in UHMWPE/MWCNTs thermoplastic composites was explained by high aspect ratio of the nanotubes and their segregated distribution inside the polymer matrix. The method of composite preparation effects the values of percolation threshold concentration φc and critical exponent t. A noticeable positive temperature coefficient of resistivity (PTC effect) was observed in the region of temperatures higher than melting point. It was explained by influence of thermal expansion of the polymer matrix and independence from the melting process that is a result of specific structure of conductive phase.  相似文献   

5.
The influence of wollastonite (CaSiO3) content on the crystallization properties and thermal stability of polypropylene (PP) composites was investigated. The results showed that the crystallization temperature, crystallization end temperature and crystallization temperature interval, as well as the degree of crystallinity of the composites, were higher than those of the unfilled PP resin, while the crystallization onset temperature was little changed from that of the unfilled PP resin. The increase of degree of crystallinity for the composites could be attributed to the heterogeneous nucleation of the CaSiO3 in the PP matrix. The thermal stability increased with increasing filler weight fraction (ϕf); the thermal decomposition rate decreased nonlinearly with increasingϕf. Finally, the dispersion of the filler particles in the matrix was observed, and the mechanisms of thermal stability and crystallizing behavior were discussed.  相似文献   

6.
郭朝霞  于建 《高分子科学》2016,34(8):1032-1038
The effects of three types of electrically-inert fillers, calcium carbonate (CaCO3), talc and glass fiber (GF), on electrical resistivity, crystallization behavior and dynamic mechanical properties of poly(m-xylene adipamide) (MXD6)/multiwalled carbon nanotube (MWCNT) composites are investigated. The electrical resistivity of MXD6/MWCNT composites is significantly reduced with the addition of inert fillers due to the volume-exclusion effect that leads to increased effective concentration of MWCNTs in MXD6 matrix and also due to improved MWCNT dispersion. The crystallization temperature of MXD6 increases with the addition of MWCNTs, indicating that MWCNTs can act as nucleating agent and induce crystallization of MXD6. The incorporation of inert fillers has no further effect on crystallization behavior of MXD6, but significantly improves the storage modulus of MXD6/MWCNT composite, demonstrating that CaCO3, talc and GF filled MXD6/MWCNT composites are very promising materials with not only improved electrical property but also excellent mechanical properties.  相似文献   

7.
In our previous work, a hybrid shish kebab structure, with polyethylene (PE) crystal lamellae periodically decorated on the surface of an inorganic whisker (SMCW) and aligned approximately perpendicular to the long axis of the whisker, has been observed in the injection molded bar of PE/SMCW composites. To investigate the effect of the molecular weight of the PE matrix on the formation of the hybrid shish kebab structure and the corresponding physical properties of HDPE/SMCW composites, in this work, three types of PE with different molecular weights were used to prepare the composites. They were first melt blended and then subjected to dynamic packing injection molding (DPIM), in which the prolonged shear was exerted on the melt during the solidification stage. An obvious hybrid shish kebab (HSK) structure, with PE crystal lamellae closely packed on the surface of the SMCW, was found in the samples with a low molecular weight PE (LMW-PE) matrix and a medium molecular weight PE (MMW-PE) matrix. However, in samples with a high molecular weight PE (HMW-PE) matrix, an incomplete HSK structure with PE crystal lamellae loosely decorated on the surface of the SMCW was observed. Furthermore, DSC results indicated that SMCW served as a good nucleating agent only for the composite with a LMW-PE matrix and the nucleation efficiency decreased with increasing PE molecular weight. Correspondingly, the tensile strength of the PE/SMCW composites was significantly improved by adding SMCW for the samples with a LMW-PE or MMW-PE matrix. Especially for samples with a LMW-PE matrix, the tensile strength was remarkably enhanced by the presence of only 1 wt % SMCW. For the composites with a HMW-PE matrix, the addition of SMCW had almost no reinforcing effect on the composites. The molecular weight dependence of the formation of HSK and property enhancement was discussed on the basis of the chain mobility and crystallization capability of the PE matrix.  相似文献   

8.
Rheological properties of vinyl ester-polyester resin suspensions containing various amounts (0.05, 0.1 and 0.3 wt.%) of multi walled carbon nanotubes (MWCNT) with and without amine functional groups (-NH2) were investigated by utilization of oscillatory rheometer with parallel plate geometry. Dispersion of corresponding carbon nanotubes within the resin blend was accomplished employing high shear mixing technique (3-roll milling). Based on the dynamic viscoelastic measurements, it was observed that at 0.3 wt.% of CNT loadings, storage modulus (G′) values of suspensions containing MWCNTs and MWCNT-NH2 exhibited frequency-independent pseudo solid like behavior especially at lower frequencies. Moreover, the loss modulus (G″) values of the resin suspensions with respect to frequency were observed to increase with an increase in contents of CNTs within the resin blend. In addition, steady shear viscosity measurements implied that at each given loading rate, the resin suspensions demonstrated shear thinning behavior regardless of amine functional groups, while the neat resin blend was almost the Newtonian fluid. Furthermore, dynamic mechanical behavior of the nanocomposites achieved by polymerizing the resin blend suspensions with MWCNTs and MWCNT-NH2 was investigated through dynamic mechanical thermal analyzer (DMTA). It was revealed that storage modulus (E′) and the loss modulus (E″) values of the resulting nanocomposites increased with regard to carbon nanotubes incorporated into the resin blend. In addition, at each given loading rate, nanocomposites containing MWCNT-NH2 possessed larger loss and storage modulus values as well as higher glass transition temperatures (Tg) as compared to those with MWCNTs. These findings were attributed to evidences for contribution of amine functional groups to chemical interactions at the interface between CNTs and the resin blend matrix. Transmission electron microscopy (TEM) studies performed on the cured resin samples approved that the dispersion state of carbon nanotubes with and without amine functional groups within the matrix resin blend was adequate. This implies that 3-roll milling process described herein is very appropriate technique for blending of carbon nanotubes with a liquid thermoset resin to manufacture nanocomposites with enhanced final properties.  相似文献   

9.
Multiwalled carbon nanotubes (MWCNTs) were functionalized with two types of chemical moieties (i.e. carboxylic, ? COOH and hydroxyl benzoic acid groups, ‐HBA) on their sidewalls in order to improve their interaction with a liquid crystalline polymer (LCP) and dispersion in LCP. We have investigated the rheological, mechanical, dynamic mechanical, and thermal properties in detail with variation of HBA‐functionalized MWCNTs in the LCP matrix. Effect of the dispersion state of the functionalized MWCNTs in the LCP matrix on the rheological behavior was also studied. The composites containing HBA‐functionalized MWCNTs showed higher complex viscosity, storage, and loss modulus than the composites with the same loading of raw MWCNTs and MWCNT‐COOH. It was suggested that the HBA‐functionalized MWCNTs exhibited a better dispersion in the polymer matrix and formed stronger CNT‐polymer interaction in the composites than the raw MWCNTs and MWCNT‐COOH, which was also confirmed by FESEM and FTIR studies. As a result, the overall mechanical performance of the HBA‐MWCNT‐LCP composites could be improved significantly. For example, the addition of 4 wt% HBA‐MWCNT to LCP resulted in the considerable improvements in the tensile strength and modulus of LCP (by 66 and 90%, respectively). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The effects of three types of electrically-inert fillers, calcium carbonate(CaCO_3), talc and glass fiber(GF), on electrical resistivity, crystallization behavior and dynamic mechanical properties of poly(m-xylene adipamide)(MXD6)/multiwalled carbon nanotube(MWCNT) composites are investigated. The electrical resistivity of MXD6/MWCNT composites is significantly reduced with the addition of inert fillers due to the volume-exclusion effect that leads to increased effective concentration of MWCNTs in MXD6 matrix and also due to improved MWCNT dispersion. The crystallization temperature of MXD6 increases with the addition of MWCNTs, indicating that MWCNTs can act as nucleating agent and induce crystallization of MXD6. The incorporation of inert fillers has no further effect on crystallization behavior of MXD6, but significantly improves the storage modulus of MXD6/MWCNT composite, demonstrating that CaCO_3, talc and GF filled MXD6/MWCNT composites are very promising materials with not only improved electrical property but also excellent mechanical properties.  相似文献   

11.
采用在转矩流变仪中熔融混合的方法制备了聚甲醛(POM)/多壁碳纳米管(MWCNTs)/玻璃纤维(GF)和POM/炭黑(CB)/GF复合材料,研究了GF的加入对复合材料的导电性能、结晶行为和动态力学性能的影响.采用场发射扫描电镜(FESEM)观察了复合材料中导电填料的分散状态,发现GF的加入对MWCNTs和CB的分散状态没有明显影响.虽然GF为导电惰性填料,但因其加入起到了占位作用,明显提高了导电填料的有效浓度,从而使复合材料的体积电阻率明显降低.采用示差扫描量热仪(DSC)研究了复合材料中POM的结晶行为,发现GF的加入对POM的结晶温度、熔点和结晶度均无明显影响.采用动态机械分析仪(DMA)对复合材料的动态力学性能进行了研究,表明GF的加入能够明显地提高复合材料的储能模量.  相似文献   

12.
Organic montmorillonite (OMMT)/polyamide-6 (PA6)/polylactic acid (PLA) composites were prepared via a step melt compounding process using a twin screw. The effect of OMMT content on the crystallization behavior, as well as rheological and mechanical properties of the composites was carried out by differential scanning calorimetry, differential mechanical analysis, and using an advanced rheometer and a material testing machine. The crystallization behavior of the polymers was studied using a dynamic rheology method, which allowed to determine the onset of nucleation and obtain semiquantitative data on the nucleation density. The results revealed that the interaction between the OMMT and the PA6/PLA inhibits the molecular chain segment motion, which reduces the nucleation temperature, the crystal growth temperature, the melting temperature and the glass transition temperature of the samples. However, the PA6/PLA/OMMT composites showed better mechanical properties than the PA6/PLA composites.  相似文献   

13.
Poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends were prepared using a carboxylic acid salt as nucleating agent (NA). The effect of NA on the crystallization kinetics of PLA and PLA/PBS blend was investigated using a differential scanning calorimeter, a polarized optical microscope and a wideangle X-ray diffractometer. The crystallization rate of PLA component in PLA/PBS blends is increased effectively by NA through fast nucleation and growth rate of PLA α'-form crystal, which is confirmed by isothermal crystallization behavior of PLA/PBA/NA composites. The isothermal crystallization results also show that the incorporation of NA induces heterogeneous nucleation mechanism in PLA component. The increased number of crystal nuclei hinders the increase of average grain size of PLA component in composites but contributes to a higher crystallinity of both PLA and PBS components in PLA/PBS blends. Finally, the mechanical properties and dynamic mechanical properties of PLA/PBS/NA composites are improved because of the increased crystallinity, which are superior to that of PLA/PBS blend.  相似文献   

14.
应用不同化学结构、分子量及其分布的环氧树脂进行了电子束辐射固化实验 ,对固化物进行了动态力学分析 ,研究了不同样品凝胶含量、内耗tanδ及动态模量的变化规律 .分析结果表明环氧树脂辐射反应活性与其化学结构有很大关系 ,酚醛型环氧树脂的辐射反应活性高 ,固化后高温模量及玻璃化温度较高 ,而脂环族环氧树脂反应活性小 .在低辐射剂量下 ,环氧树脂的固化度随分子量增大略有下降 ,但固化物的玻璃化温度随分子量增加而升高 .增大辐射剂量 ,树脂固化度的提高受分子量大小的影响很小 ,分子量较大样品的网络均匀程度有所提高 ,在较高反应程度下 ,玻璃化温度主要受固化度影响 .树脂固化程度也是决定其模量高低的主要因素 ,而在固化程度相近的情况下 ,分子量的影响作用很大 .在同样辐射剂量下 ,分子量分布宽的树脂固化反应程度高 ,但交联网络均匀性低 .  相似文献   

15.
In this work, dodecylamine‐modified graphene nanosheets (DA‐GNSs) and γ‐aminopropyl‐triethoxysilane‐treated multiwalled carbon nanotubes (f‐MWCNTs) are employed to prepare cyanate ester (CE) thermally conductive composites. By adding 5 wt% DA‐GNSs or f‐MWCNTs to the CE resin, the thermal conductivities of the composites became 3.2 and 2.5 times that of the CE resin, respectively. To further improve the thermal conductivity, a mixture of the two fillers was utilized. A remarkable synergetic effect between the DA‐GNSs and f‐MWCNTs on improving the thermal conductivity of CE resin composites was demonstrated. The composite containing 3 wt% hybrid filler exhibited a 185% increase in thermal conductivity compared with pure CE resin, whereas composites with individual DA‐GNSs and f‐MWCNTs exhibited increases of 158 and 108%, respectively. Moreover, the composite with hybrid filler retained high electrical resistivity. Scanning electron microscopy images of the composite morphologies showed that the modified graphene nanosheets (GNSs) and multiwalled carbon nanotubes (MWCNTs) were uniformly dispersed in the CE matrix, and a number of junction points among MWCNTs and between MWCNTs and GNSs formed in the composites with hybrid fillers. Generally, we can conclude that these composites filled with hybrid fillers may be promising materials of further improving the thermal conductivity of CE composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
《European Polymer Journal》2004,40(4):679-684
Commercial-grade polypropylene was modified with a specific nucleation agent based on an amide of dicarboxylic acid, which promotes crystallization predominantly in the β-phase. The resulting material was used as a matrix for composites containing 10%, 20%, and 30% (by weight) of different calcium carbonate fillers. These fillers differed in particle size and surface treatment. The β-phase content, morphology and tensile mechanical properties were investigated. A distinct β-nucleation activity was found with surface-treated fillers; nevertheless, to obtain stiff and reasonably ductile composite materials, a matrix containing a critical nucleant concentration (0.03 wt%) was necessary.  相似文献   

17.
A series of poly(ethylene terephthalate)/multi‐walled carbon nanotubes (PET/MWCNTs) nanocomposites were prepared by in situ polymerization using different amounts of multi‐walled carbon nanotubes (MWCNTs). The polymerization of poly(ethylene terephthalate) (PET) was carried out by the two‐stage melt polycondensation method. The intrinsic viscosity (IV) of the composites is ranged between 0.31 and 0.63 dL/g depending on the concentration of the MWCNTs. A decrease of IV was found by increasing MWCNTs content. This is due to the reactions taking place between the two components leading to branched and crosslinked macromolecules. These reactions are, mainly, responsible for thermal behavior of nanocomposites. The melting point of the nanocomposites was shifted to slightly higher temperatures by the addition till 0.55 wt % of MWCNTs while for higher concentration was reduced. The degree of crystallinity in all nanocomposites was, also, reduced by increasing MWCNTs amount. However, from crystallization temperature, it was found that MWCNTs till 1 wt % can enhance the crystallization rate of PET, whereas at higher content (2 wt %), the trend is the opposite due to the formation of crosslinked macromolecules. From the extended crystallization analysis, it was proved that MWCNTs act as nucleating agents for PET crystallization. Additionally, the crystallization mechanism due to the existence of MWCNT becomes more complicated because two mechanisms with different activation energies are taking place in the different degrees of crystallization, depending on the percentage of MWCNT. The effect of molecular weight also plays an important role. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1452–1466, 2009  相似文献   

18.
Cellulose nanowhiskers (CNWs) prepared via TEMPO mediated oxidation are used as biodegradable filler in an epoxy matrix. Since CNWs are hydrophilic and epoxy is hydrophobic, amphiphilic block copolymer surfactants are employed to improve the interactions between the filler and the matrix. The surfactants used are Pluronics, a family of triblock copolymers containing two poly(ethylene oxide) blocks and one poly(propylene oxide) block. In this study, Pluronic L61 and L121 with molecular weight of 2000 and 4400 g/mol and hydrophilic to lipophilic balance of 3 and 1 respectively, are used and their effect on the dispersion of CNWs in epoxy is discussed. The hydrophilic tails of Pluronics interact with the hydroxyl and carboxylic groups on the CNW surface and then these surfactant-treated CNWs are directly incorporated into epoxy by high speed mixing. The dispersion state of the surfactant-treated CNWs in epoxy is assessed by rheological measurements and the mechanical properties of the resulting composites are characterized by tensile test and dynamic mechanical thermal analysis. The Pluronic L61 treated CNW/epoxy composites show the highest storage modulus at high temperatures (about 77 % increases) indicative of improved interfacial interactions between the CNWs and the epoxy matrix. Also, an increase of around 10 °C in the glass–rubbery transition temperature of the L61 treated CNW/epoxy composite leads to potential application at higher service temperatures.  相似文献   

19.

The processability of ultrahigh molecular weight polyethylene (UHMWPE) improved by oligomer-modified calcium carbonate (CaCO3) was observed in our previous work. In order to understand the effect of oligomer-modified CaCO3 on the crystallization of UHMWPE, the non-isothermal crystallization behavior and crystallization kinetics of UHMWPE composites filled by oligomer-modified CaCO3 was studied by differential scanning calorimetry in this work. Jeziorny and Mo methods were used to describe the non-isothermal crystallization kinetics of UHMWPE composites. The effect of modified filler content and cooling rate on the crystallization temperature and crystallization rate was discussed. The heterogeneous nucleation of modified CaCO3 slightly increases the crystallization temperature of UHMWPE. The crystallization enthalpy of UHMWPE composites is significantly higher than that of UHMWPE. The crystallization rate of UHMWPE composites depends on the filler contents and cooling rate.

  相似文献   

20.
李武 《高分子科学》2017,35(5):659-671
Polypropylene(PP) composites containing magnesium oxysulfate whisker(MOSw) or lauric acid(LA) modified MOSw(LAMOSw) were prepared via melt mixing in a torque rheometer. The heterogeneous nucleating effect of LAMOSw was clearly observed in polarized light microscopy(PLM) pictures with the presence of an abundance of small spherulites. MOSw exhibited no nucleation effect and formed a few spherulites with large size. Compared with PP/MOSw composites, PP/LAMOSw exhibited better impact strength, tensile strength and nominal strain at break, ascribing to three possible reasons:(i) more β-crystal PP formed,(ii) better dispersity of LAMOSw in PP matrix and(iii) the plasticizing effect of LA. The results of dynamic mechanical thermal analysis(DMTA) indicated that brittleness of the PP matrix at low temperature was improved by the addition of LAMOSw, while the interfacial interactions between MOSw and PP matrix were actually weakened by LA, as evidenced by the higher tanδ values over the entire range of test temperatures. In terms of the rheological properties of the composites, both the η* and G′ at low frequencies increase with the addition of MOSw or LAMOSw, indicating that the PP matrix was transformed from liquid-like to solid-like. However, a network of whiskers did not form because no plateau was found in the G′ at low frequencies. With low filler content, LAMOSw produced a stronger solid-like behavior than MOSw mainly due to the better dispersion of the LAMOSw in PP matrix. However, for highly-filled composites, the η* of PP/LAMOSw at low frequencies was smaller than that of PP/MOSw composite, since the particleparticle contact effect played a major role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号