首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tang AN  Ding GS  Yan XP 《Talanta》2005,67(5):942-946
Cloud point extraction was applied as a preconcentration step for electrothermal atomic absorption spectrometry (ETAAS) determination of As(III) in aqueous solutions. After complexation with ammonium pyrrolidinedithiocarbamate, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. 0.1 mol L−1 HNO3 in methanol was added to the surfactant-rich phase before ETAAS determination. The precision (R.S.D.) for 11 replicate determinations of 5.0 μg L−1 of As(III) was 3.0%. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for ETAAS determination and in the initial solution, was 36 for As(III). The linear concentration range was from 0.1 to 20 μg L−1. The developed method was applied to the determination of As(III) in lake water and river water.  相似文献   

2.
Cloud point methodology has been successfully used for the preconcentration of trace amounts of Cd and Pb as a prior step to their determination by flame atomic absorption spectrometry. O,O-Diethyldithiophosphate and Triton X-114 are used as hydrophobic ligand and non-ionic surfactant, respectively. After phase separation at 40 °C based on cloud point of the mixture, the surfactant-rich phase is diluted with methanol. The enriched analyte in the final solution is determined by flame atomic absorption spectrometry using conventional nebulization. After optimization of the complexation and extraction conditions, enhancement factors of 22 and 43 were obtained for Cd and Pb, respectively. Under the experimental conditions used, preconcentration of only 10 ml of sample in the presence of 0.05% (v/v) Triton X-114 permitted the detection of 0.62 μg l−1 of Cd and 2.86 μg l−1of Pb. The proposed method was applied to the determination of Cd and Pb in human hair samples.  相似文献   

3.
This work describes the optimization of a cloud point extraction (CPE) method for casein proteins from cow milk samples. To promote phase separation, polyoxyethylene(8) isooctylphenyl ether (Triton® X-114) and sodium chloride (NaCl) were used as nonionic surfactant and electrolyte, respectively. Using multivariate studies, four major CPE variables were evaluated: Triton® X-114 concentration, sample volume, NaCl concentration, and pH. The results show that surfactant concentration and sample volume were the main variable affecting the CPE process, with the following optimized parameters: 1% (w/v) Triton® X-114 concentration, 50 μL of sample volume, 6% (w/v) NaCl concentration and extractions carried out at pH 7.0. At these conditions, 923 ± 66 and 67 ± 2 μg mL−1 of total protein were found in the surfactant-rich and surfactant-poor phases, respectively. Finally, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was then used to evaluate those target proteins (s1-casein, s2-casein and β-casein) separation as well as to check the efficiency of the extraction procedure, making a fingerprint of those target proteins possible.  相似文献   

4.
Ohashi A  Ito H  Kanai C  Imura H  Ohashi K 《Talanta》2005,65(2):525-530
The cloud point extraction behavior of iron(III) and vanadium(V) using 8-quinolinol derivatives (HA) such as 8-quinolinol (HQ), 2-methyl-8-quinolinol (HMQ), 5-butyloxymethyl-8-quinolinol (HO4Q), 5-hexyloxymethyl-8-quinolinol (HO6Q), and 2-methyl-5-octyloxymethyl-8-quinolinol (HMO8Q) and Triton X-100 solution was investigated. Iron(III) was extracted with HA and 4% (v/v) Triton X-100 in the pH range of 1.70-5.44. Above pH 4.0, more than 95% of iron(III) was extracted with HQ, HMQ, and HMO8Q. Vanadium(V) was also extracted with HA and 4% (v/v) Triton X-100 in the pH range of 2.07-5.00, and the extractability increased in the following order of HMQ < HQ < HO4Q < HO6Q. The cloud point extraction was applied to the determination of iron(III) in the riverine water reference by a graphite furnace atomic absorption spectroscopy. When 1.25 × 10−3 M HMQ and 1% (v/v) Triton X-100 were used, the found values showed a good agreement with the certified ones within the 2% of the R.S.D. Moreover, the effect of an alkyl group on the solubility of 5-alkyloxymethyl-8-quinolinol and 2-methyl-5-alkyloxymethyl-8-quinolinol in 4% (v/v) Triton X-100 at 25 °C was also investigated.  相似文献   

5.
The cloud point extraction behavior of aluminum(III) with 8-quinolinol (HQ) or 2-methyl-8-quinolinol (HMQ) and Triton X-100 was investigated in the absence and presence of 3,5-dichlorophenol (Hdcp). Aluminum(III) was almost extracted with HQ and 4(v/v)% Triton X-100 above pH 5.0, but was not extracted with HMQ-Triton X-100. However, in the presence of Hdcp, it was almost quantitatively extracted with HMQ-Triton X-100. The synergistic effect of Hdcp on the extraction of aluminum(III) with HMQ and Triton X-100 may be caused by the formation of a mixed-ligand complex, Al(dcp)(MQ)2.  相似文献   

6.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

7.
A sensitive and simple method for flame atomic absorption spectrometry (FAAS) determination of antimony species after separation/preconcentration by cloud point extraction (CPE) has been developed. When the system temperature is higher than the cloud point extraction temperature, the complex of antimony (III) with N-benzoyl-N-phenyhydroxylamine (BPHA) can enter the surfactant-rich phase, whereas the antimony (V) remains in the aqueous phase. Antimony (III) in surfactant-rich phase was analyzed by FAAS and antimony (V) was calculated by subtracting of antimony (III) from the total antimony after reducing antimony (V) to antimony (III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of BPHA and Triton X-114, equilibration temperature and time, were investigated systematically. Under optimized conditions, the detection limits (3σ) were 1.82 ng mL−1 for Sb(III) and 2.08 ng mL−1 for Sb(total), and the relative standard deviations (RSDs) were 2.6% for Sb(III) and 2.2% for Sb(total). The proposed method was applied to the speciation of antimony species in artificial seawater and wastewater, and recoveries in the range of 95.3–106% were obtained by spiking real samples. This technique was validated by means of reference water materials and gave good agreement with certified values.  相似文献   

8.
Cloud point extraction (CPE) was used to extract and separate lanthanum(III) and gadolinium(III) nitrate from an aqueous solution. The methodology used is based on the formation of lanthanide(III)-8-hydroxyquinoline (8-HQ) complexes soluble in a micellar phase of non-ionic surfactant. The lanthanide(III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud point temperature (CPT). The structure of the non-ionic surfactant, and the chelating agent-metal molar ratio are identified as factors determining the extraction efficiency and selectivity. In an aqueous solution containing equimolar concentrations of La(III) and Gd(III), extraction efficiency for Gd(III) can reach 96% with a Gd(III)/La(III) selectivity higher than 30 using Triton X-114. Under those conditions, a Gd(III) decontamination factor of 50 is obtained.  相似文献   

9.
Ruengsitagoon W 《Talanta》2008,74(5):1236-1241
A simple reversed flow injection colourimetric procedure for determining iron(III) was proposed. It is based on the reaction between iron(III) with chlortetracycline, resulting in an intense yellow complex with a suitable absorption at 435 nm. A 200 μl chlortetracycline reagent solution was injected into the phosphate buffer stream (flow rate 2.0 ml min−1) which was then merged with iron(III) standard or sample in dilute nitric acid stream (flow rate 1.5 ml min−1). Optimum conditions for determining iron(III) were investigated by univariate method. Under the optimum conditions, a linear calibration graph was obtained over the range 0.5–20.0 μg ml−1. The detection limit (3σ) and the quantification limit (10σ) were 0.10 and 0.82 μg ml−1, respectively. The relatives standard deviation of the proposed method calculated from 12 replicate injections of 2.0 and 10.0 μg ml−1 iron(III) were 0.43 and 0.59%, respectively. The sample throughput was 60 h−1. The proposed method has been satisfactorily applied to the determination of iron(III) in natural waters.  相似文献   

10.
Method development for the pre-concentration of mercury in human hair, dogfish liver and dogfish muscle samples using cloud-point extraction and cold vapor atomic absorption spectrometry is demonstrated. Before the extraction, the samples were submitted to microwave-assisted digestion in a mixture of H2O2 and HNO3. Cloud point extraction was carried out using 0.5% (m/v) ammonium O,O-diethyldithiophosphate (DDTP) as the chelating agent and 0.3% (m/v) Triton X-114 as the non-ionic surfactant. Phase separation was induced after the addition of Na2SO4 to a final concentration of 0.2 mol L−1. Aliquots of the final extract were transferred to PTFE tubes and NaBH4 and HCl were added. The mercury vapor was driven to a non-heated quartz tube for measuring the absorbance. The results obtained with salt-induced phase separation were in good agreement with the certified values at a 95% confidence level. An enrichment factor of 10 allowed a detection limit of 0.4 ng g−1 to be obtained, which demonstrates the high sensitivity of the proposed procedure for the determination of mercury at trace levels.  相似文献   

11.
Cloud point extraction (CPE) was applied as a preconcentration step for HPLC speciation of chromium in aqueous solutions. Simultaneous preconcentration of Cr(III) and Cr(VI) in aqueous solutions was achieved by CPE with diethyldithiocarbamate (DDTC) as the chelating agent and Triton X-114 as the extractant. Baseline separation of the DDTC chelates of Cr(III) and Cr(VI) was realized on a RP-C18 column with the use of a mixture of methanol-water-acetonitrile (65:21:14, v/v) buffered with 0.05 M NaAc-HAc solution (pH 3.6) as the mobile phase at a flow rate of 1.0 ml min(-1). The precision (R.S.D.) for eight replicate injections of a mixture of 100 microg l(-1) of Cr(III) and Cr(VI) were 0.6 and 0.5% for the retention time, 4.1 and 4.6% for the peak area measurement, respectively. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for HPLC separation and in the initial solution, was 65 for Cr(III) and 19 for Cr(VI). The linear concentration range was from 50 to 1000 microg l(-1) for Cr(III) and 50-2000 microg l(-1) for Cr(VI). The detection limits of Cr(III) and Cr(VI) were 3.4 and 5.2 microg l(-1), respectively. The developed method was applied to the speciation of Cr(III) and Cr(VI) in snow water, river water, seawater and wastewater samples.  相似文献   

12.
In the present study a simple versatile separation method using cloud point procedure for extraction of trace levels of zirconium and hafnium is proposed. The extraction of analytes from aqueous samples was performed in the presence of quinalizarine as chelating agent and Triton X-114 as a non-ionic surfactant. After phase separation, the surfactant-rich phase was diluted with 30% (v/v) propanol solution containing 1 mol l(-1) HNO3. Then, the enriched analytes in the surfactant-rich phase were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The different variables affecting the complexation and extraction conditions were optimized. Under the optimum conditions (i.e. 3.4 x 10(-5) mol l(-1) quinalizarine, 0.1% (w/v) Triton X-114, 55 degrees C equilibrium temperature) the calibration graphs were linear in the range of 0.5-1000 mug l(-1) with detection limits (DLs) of 0.26 and 0.31 microg l(-1) for Zr and Hf, respectively. Under the presence of foreign ions no significant interference was observed. The precision (%RSD) for 8 replicate determinations at 200 microg l(-1) of Zr and Hf was better than 2.9% and the enrichment factors were obtained as 38.9 and 35.8 for Zr and Hf, respectively. Finally, the proposed method was successfully utilized for the determination of these cations in water and alloy samples.  相似文献   

13.
The influence of concentration conditions and acidity on the phase separation in non-ionic surfactants Triton X-100 solutions in the presence of phenol was investigated. It was shown that the addition of small amounts of phenol results in the decrease of the cloud point temperature of Triton X-100 solutions. On the other hand, the addition of phenol into the investigated system resulted in the decrease of the hydration values of surfactant-rich phases and the increase of their hydrophobicity. The extraction degree and distribution coefficient of phenol between the water and the surfactant-rich phases were studied. On the basis of data obtained the molar parts of water, phenol and Triton X-100 in the non-ionic surfactant-rich phases formed at different concentration conditions were calculated. Possibilities of the application of phenol-induced micellar extraction for microcomponents preconcentration were estimated.  相似文献   

14.
Separation of trivalent lanthanides (Ln(III)) and actinides (An(III)) is a key issue in the advanced spent nuclear fuel reprocessing. In the well-known trivalent actinide lanthanide separation by phosphorus reagent extraction from aqueous komplexes (TALSPEAK) process, the organophosphorus ligand HDEHP (di-(2-ethylhexyl) phosphoric acid) has been used as an efficient reagent for the partitioning of Ln(III) from An(III) with the combination of a holdback reagent in aqueous lactate buffer solution. In this work, the structural and electronic properties of Eu3+ and Am3+ complexes with HDEHP in nitric acid solution have been systematically explored by using scalar-relativistic density functional theory (DFT). It was found that HDEHP can coordinate with M(III) (M=Eu, Am) cations in the form of hydrogen-bonded dimers HL2- (L=DEHP), and the metal ions prefer to coordinate with the phosphoryl oxygen atom of the ligand. For all the extraction complexes, the metal-ligand bonds are mainly ionic in nature. Although Eu(III) complexes have higher interaction energies, the HL2- dimer shows comparable affinity for Eu(III) and Am(III) according to thermodynamic analysis, which may be attributed to the higher stabilities of Eu(III) nonahydrate. It is expected that this work could provide insightful information on the complexation of An(III) and Ln(III) with HDEHP at the molecular level.  相似文献   

15.
A sequential injection analysis (SIA) spectrophotometric method for the determination of trace amounts of zinc(II) with 1-(2-pyridylazo)-2-naphthol (PAN) is described. The method is based on the measurement of absorbance of the zinc(II)–PAN chelate solubilized with a non-ionic surfactant, Triton X-100, no extraction procedure is required in the proposed method, yielding a pink colored complex at pH 9.5 with absorption maximum at 553 nm. The SIA parameters that affect the signal response have been optimized in order to get the better sensitivity and minimum reagent consumption. A linear relationship between the relative peak height and concentration was obtained in the concentration range of 0.1–1.0 μg ml−1. The limit of detection (LOD, defined as 3σ) and limit of quantification (LOQ, defined as 10σ) were 0.02 and 0.06 μg ml−1, respectively. The sample throughput about 40 samples/h was obtained. The repeatability were 1.32 and 1.24% (n = 10) for 0.1 and 0.5 μg ml−1, respectively. The proposed method was successfully applied to the assay of zinc(II) in three samples of multivitamin tablets. The results were found to be in good agreement with those obtained by flame atomic absorption spectrophotometric method and with the claimed values by the manufactures. The t-test showed no significant difference at 95% confidence level.  相似文献   

16.
Cloud point extraction was successfully applied to the preconcentration of phenothiazine derivatives, such as pericyazine (PC), chlorpromazine (CP) and fluphenazine (FUL), for gas chromatography (GC). Phenothiazine derivatives were separated from surfactants by passing the surfactant-rich phase through a cation exchange column after cloud point extraction, permitting the determination of the phenothiazine derivatives extracted in the surfactant-rich phase by GC. The optimal condition for the cloud point extraction of phenothiazine derivatives was also investigated using Triton X-100, Triton X-114, and PONPE10. Triton X-114 provided the most efficient recovery of phenothiazine derivatives among the surfactants used. The addition of sodium chloride and excess ammonia to the sample solution resulted in a decrement of the recovery of the phenothiazine derivatives. The proposed method was applied to the determination of phenothiazine derivatives in spiked human serum by GC. The recoveries of PC, CP, and FUL in spiked human serum were 95.1%, 87.1%, and 84.7%, respectively.  相似文献   

17.
A micelle-mediated extraction (CPE) procedure has been developed to remove trace amounts of uranium from wastewater using a non-ionic surfactant (Triton (X-100)) and lipophilic chelating extracting agent (D2EHPA) in acetate medium. The methodology used is based on the formation of metal complexes soluble in a micellar phase of a non-ionic surfactant. The uranyl ions complexes are then extracted into the surfactant-rich phase at a ambient temperature. The effects of different operating parameters such as the concentrations of Triton (X-100), D2EHPA and metal ions, temperature, sodium acetate rate and pH on the cloud point extraction of uranyl ions were studied in details and a set of optimum conditions were obtained. The results showed, without contribution of energy (ambient temperature), that up to 1000?ppm of uranyl ions can quantitatively be removed (>97?%) in a single CPE extraction using optimum conditions.  相似文献   

18.
Goto K  Taguchi S  Fukue Y  Ohta K  Watanabe H 《Talanta》1977,24(12):752-753
A spectrophotometric method for the determination of trace amounts of manganese with 1-(2-pyridylazo)-2-naphthol (PAN) is described. The method is based on the measurement of absorbance of the manganese—PAN chelate solubilized with a non-ionic surfactant, Triton X-100. No extraction procedure is required in the method proposed. High concentrations of calcium, aluminium and magnesium do not interfere. The presence of up to 10 ppm of lead can be tolerated. Iron, cadmium, zinc, cobalt and nickel can be effectively masked with potassium cyanide. Beer's law is obeyed up to 2 ppm of manganese. The molar absorptivity of the manganese—PAN chelate found was 4.4 × 104 l. mole −1. cm−1 at 562 nm. The overall stability constant of Mn(PAN)2 in 0.4% Triton X-100 medium is 1016.8.  相似文献   

19.
The immobilization of purpurogallin on the surface of amino group containing silica gel phase for the formation of a newly synthesized silica gel-bound purpurogallin (SGBP) is described. The surface modification was studied and evaluated by determination of the surface coverage value by both the elemental analysis and metal probe testing method, which was found to be 0.485 and 0.460 mmol g−1, respectively. The metal sorption properties of SGBP were examined by a series of di- and tri-valent metal ions. The metal capacity values (mmol g−1) for this series of metal ions were also determined under different buffer solutions (pH 1.0–6.0) as well as shaking times by the batch equilibrium technique. The results of this study confirmed the strong affinity and selectivity as well as the fast equilibration and interaction processes of SGBP and Fe(III) compared to the other tested metal ions. The reduction–oxidation process of iron(II)/iron(III) by SGBP was also studied and the results indicated only 2.1% reduction of iron(III) into iron(II). The selectivity incorporated into silica gel phase via the immobilization of purpurogallin was intensively studied for a several binary mixtures containing iron(III)—another interfering metal ion. The determined percentage extraction values of iron(III) from these mixtures were found to be in the range of 94–100%. The potential applications of SGBP as a selective solid extractor for iron(III) from natural tap water samples and real matrices were also studied and the results revealed good percentage extraction values of iron(III) (93.5−94.9±4.6−5.3%) of the spiked iron(III) in the acidified tap water samples as well as a high preconcentration factor of 500 was also established when SGBP was used as a selective solid phase extractor and preconcentration of iron(III) from acidified soft drink samples with percentage recovery values of (98.0−97.4±4.7−5.3%) of the spiked iron(III).  相似文献   

20.
Cloud point extraction (CPE) has been used for the simultaneous pre-concentration of cadmium, copper, lead and zinc after the formation of a complex with 1-(2-thiazolylazo)-2-naphthol (TAN), and later analysis by flame atomic absorption spectrometry (FAAS) using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The chemical variables affecting the separation phase and the viscosity affecting the detection process were optimized. At pH 8.6, pre-concentration of only 50 ml of sample in the presence of 0.05% Triton X-114 and 2×10−5 mol l−1 TAN permitted the detection of 0.099, 0.27, 1.1 and 0.095 ng ml−1 cadmium, copper, lead and zinc, respectively. The enhancement factors were 57.7, 64.3, 55.6 and 63.7 for cadmium, copper, lead and zinc, respectively. The proposed method has been applied to the determination of cadmium, copper, lead and zinc in water samples and a standard reference material (SRM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号