首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 244 毫秒
1.
炭化温度对烟杆基活性炭孔结构及电化学性能的影响研究   总被引:2,自引:0,他引:2  
夏笑虹  石磊  何月德  杨丽  刘洪波 《化学学报》2011,69(21):2627-2631
以烟杆为原料, 氢氧化钾为活化剂, 通过调节炭化温度(500~800 ℃温度范围)在相同活化条件下制备了具有不同孔隙结构的活性炭材料. N2吸附测试表明随着炭化温度降低, 活性炭的比表面积和总孔容先增大后减小, 中孔比表面积和平均孔径却一直增大. 其中600 ℃炭化样品经KOH活化后可制得比表面积为3333 m2•g-1, 总孔容为2.47 cm3• g-1, 中孔孔容达2.11 cm3•g-1的高中孔率高比表面积活性炭材料. 采用直流充放电法、交流阻抗法和循环伏安法测定上述多孔炭为电极材料的双电层电容器的电化学性能, 结果表明: 炭化温度不同的烟杆基活性炭电极均表现出良好的功率特性, 充放电流增大50倍, 容量保持率均在80%左右, 其中TS-AC-600活性炭电极在有机电解液中1 mA•cm-2充放电时, 比电容达到190 F•g-1. 较高的中孔率和较大的平均孔径使得烟杆基活性炭电极具有良好的高倍率充放电性能.  相似文献   

2.
活化条件对活性碳纳米管比表面积的影响   总被引:1,自引:0,他引:1  
以KOH为活化剂, 研究了多壁碳纳米管在制备活性碳纳米管过程中四个重要影响因素: 活化剂用量、活化温度、活化时间和活化过程中保护气体的流速对所得活性碳纳米管BET比表面积的影响并解释了原因. 研究表明上述四个因素都会对活性碳纳米管的比表面积产生较大的影响, 其中活化剂用量的影响最大, 在研究范围内可引起比表面积增大约241 m2•g-1. 在这四个影响因素中除活性碳纳米管的比表面积随活化温度的增加而不断增加外, 其他三个影响因素的变化都会使活性碳纳米管的比表面积出现最大值, 而且四个影响因素的改变, 都不改变活性碳纳米管的孔洞主要是中孔和大孔的特点.  相似文献   

3.
以胶态SiO2纳米粒子为模板,壳聚糖为碳源,ZnCl2为活化剂,制备了具有不同比表面积和孔体积的氮掺杂介孔碳。采用多种表征手段对碳材料的微观形貌、比表面积和孔道结构进行了表征,探究了壳聚糖与SiO2纳米粒子的比例以及ZnCl2活化剂对碳材料孔体积和比表面积的影响。结果表明,在未使用活化剂时碳材料(CSi-1.75)的孔体积高达4.53 cm3·g-1,但其比表面积最小(729 m2·g-1);使用ZnCl2作为活化剂制备的碳材料(CSi-1.75-Zn)比表面积为1 032 m2·g-1,但其孔体积下降到1.99 cm3·g-1,且具有最多的吡啶氮和吡咯氮。在以6.0 mol·L-1KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时,CSi-1.75...  相似文献   

4.
无机盐活化剂-氨基酸盐基溶液捕集温室气体CO2   总被引:3,自引:1,他引:2  
将无机盐K3PO4、K2HPO4和KH2PO4作为活化剂,分别添加于氨基乙酸盐溶液中,形成CO2活化吸收剂,采用膜接触器 再生循环装置,评价和比较了氨基乙酸盐和活化吸收剂捕集CO2的性能,研究了活化剂的浓度、气液流速等因素对总体积传质系数、传质通量和捕集率的影响。结果表明,磷酸盐活化剂在氨基乙酸盐吸收剂中,对CO2的捕集均产生影响,活化效应存在PO43->HPO42->H2PO4的规律;添加少量活化剂的作用比添加较多量的活化作用大;活化吸收剂的捕集率明显大于非活化吸收剂;膜吸收流体力学状态的改变,能够改善膜接触器传质性能,增大传质通量,但增大的程度有限。  相似文献   

5.
张韩方  魏风  孙健  荆梦莹  何孝军 《电化学》2019,25(6):764-772
本文以稻壳为碳源,以离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)为模板和辅助活化剂制备了多孔炭材料(PCs). 多孔炭的比表面积达1438 m2·g-1,总孔容达0.75 cm3·g-1. 以PCs为超级电容器电极材料,6 mol·L-1的KOH溶液为电解液组装成扣式电池,在0.05 A·g-1的电流密度下,比电容高达256 F·g-1;当电流密度增大至10 A·g-1,其比电容仍保持在211 F·g-1,展现出好的倍率性能. 所得的多孔炭电极均表现出优异的循环稳定性. 这一工作以BMIMPF6作为模板和辅助活化剂,为合成生物质基超级电容器用多孔炭提供了一种新方法.  相似文献   

6.
黄再波  高德淑  李朝晖  雷钢铁  周姬 《化学学报》2007,65(11):1007-1011
以高压静电纺丝法制备了具有微孔结构的偏氟乙烯-六氟丙烯共聚物[P(VDF-HFP)]无纺布膜, 吸附离子液体3-乙基-1-甲基咪唑鎓四氟硼酸盐(EMIBF4)后成为凝胶聚合物电解质, 其室温离子电导率达到8.43 mS•cm-1, 初始热失重温度超过300 ℃. 以其为聚合物电解质的活性碳电极双电层电容器具有较好的电化学性能, 1.0 mA•cm-2恒流充放电500次循环后仍保持 90.67 F•g-1的比容量, 容量保持率为96.86%.  相似文献   

7.
碳纳米管微结构的改变对其容量性能的影响   总被引:9,自引:0,他引:9  
以KOH为活性剂,通过在高温下将碳纳米管进行活化处理来实现对碳纳米管管壁结构的改变,得到了比表面积和孔容分别是活化处理前约3倍和1.5倍的活性碳纳米管.将活化处理前后两种碳纳米管分别制作成电化学超级电容器电极,在充满氩气的无水手套箱组装成模拟电化学超级电容器,在恒流充放电模式下进行电化学可逆容量的测试,发现活性碳纳米管的电化学容量远高于活化前碳纳米管,是它的2倍.从而发现碳纳米管被打断,管壁变粗糙的活性碳纳米管比一般碳纳米管更适合用于电化学超级电容器电极材料.  相似文献   

8.
NiO/CNTs的制备及其电化学电容行为研究   总被引:1,自引:0,他引:1  
贾巍  徐茂文  雷超  包淑娟  贾殿赠 《化学学报》2011,69(15):1773-1779
用改良的沉淀法在酸化处理过的碳纳米管(CNTs)上沉积氢氧化镍, 经300 ℃热分解得到NiO/CNTs复合电极材料. 采用X射线衍射(XRD)、热重分析(TGA)、扫描电镜(SEM)和Brunauer-Emmett-Teller (BET)比表面积分析等方法对合成的材料进行了物理表征|用循环伏安法和充放电测试对其电化学性能进行了研究. 结果表明, CNTs的引入在一定程度上提高了NiO的分散性, 从而大大增加了复合电极材料的比电容和倍率容量. 掺入20% CNTs后复合电极的比电容达到最高值(309 F•g-1)|掺入40% CNTs的复合电极材料扣除CNTs对容量的贡献后(本实验测试CNTs的比容量为35 F•g-1), NiO的放电容量可达420 F•g-1, 明显高于纯相NiO的容量(175 F•g-1), 并且材料的倍率容量也显著提高.  相似文献   

9.
孙允凯  肖新荣  阳鹏飞  孙中溪 《化学学报》2011,69(23):2807-2811
以无机铝盐Al(NO3)3为原料, 以乙二胺和聚乙二醇为协同模板导向剂, 与氨水反应, 经过“沉淀-超声-煅烧”等过程, 制得介孔纳米氧化铝. 用TEM, XRD, N2吸附-脱附等测试技术对样品进行了测试和表征. 研究结果表明, 所得样品具有相当高的比表面积(510 m2•g-1)、较大孔容(1.13 cm3•g-1)和较为集中的孔径(5.8 nm)分布. 根据乙二胺和氧化铝表面的溶液化学反应及在不同pH条件下的溶液组分分布, 探讨了它们在介孔氧化铝制备过程中的协同模板作用机理.  相似文献   

10.
以无灰煤(HyperCoal)为原料,KOH和CaCO3为活化剂制备了煤基活性炭,采用低温N2吸附法表征了活性炭的比表面积和孔结构,测定了活性炭用作双电层电容器(EDLC)电极材料的电化学性能。考察了炭化温度、活化温度、活化时间和活化剂对活性炭电容特性的影响。研究结果表明,比表面积和比电容随着炭化温度的升高而降低,活化温度过高或活化时间太长对比电容有不利影响。此外,CaCO3影响活化过程中孔的开发,显著降低所制备活性炭的比表面积和比电容。在炭化温度为500℃、活化温度为800℃、KOH与焦的质量比为4∶1和活化时间2 h下所得活性炭的比表面积和总孔容分别达到2 540 m2/g和1.65 cm3/g,该活性炭电极在0.5 mol/L TEABF4/PC电解液中的比电容达到最大值46.0 F/g。  相似文献   

11.
活化和表面改性对碳纳米管超级电容器性能的影响   总被引:6,自引:0,他引:6  
用KOH为活化剂对碳纳米管(CNTs)进行活化;用浓硝酸为氧化剂对活化CNTs进行表面改性.通过TEM、BET和IR对经过活化和表面改性的CNTs进行了分析,并运用循环伏安和恒流充放电测试研究了活化和表面改性对CNTs超级电容器性能的影响.结果表明,通过活化使CNTs的比表面积增大,从而使其比电容从未活化时的43 F•g-1提高到73 F•g-1;通过表面改性引进赝电容,使电容器的比电容进一步提高到94 F•g-1.  相似文献   

12.
An activated carbon was prepared from a polyaniline base using K2CO3 as an activating agent. The morphology, surface chemical composition, and surface area of the as-prepared carbon materials were investigated by scanning electron microscope, X-ray photoelectron spectroscopy, and Brunauer?CEmmett?CTeller measurement, respectively. Electrochemical properties of the as-prepared sample were studied by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6?mol?L?1 KOH aqueous solution. Compared with the non-activated carbon, activated carbon showed superior capacitive performance. The activation carbon presented a high specific gravimetric capacitance of 210?F?g?1. The good electrochemical performance of the activated carbon was ascribed to well-developed micropores, high surface area, the presence of nitrogen and oxygen functional groups, and larger pore volume.  相似文献   

13.
A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body‐centered cubic mesoporous phenolic‐resin‐based carbon with KOH. The effect of the KOH/carbon‐weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon‐weight ratio of 6:1 possessed the largest specific surface area (1118 m2 g?1), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g?1 at a current density of 0.1 A g?1 in 1 M H2SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g?1 retained at 20 A g?1) and good long‐term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro‐mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport.  相似文献   

14.
Polyacrylonitrile (PAN)-based porous carbon was prepared by different methods of activation with PAN polymer microsphere as precursor. The morphology, structure and electrical properties for supercapacitor of the porous carbon were investigated. It was found that the morphology of PAN nanospheres tended to be destroyed in the process of one-step activation (activation and carbonization were carried out simultaneously, and could only be retained when the amount of activating agent KOH was small). While the spherical morphology could be well reserved during the two-step activation method (carbonization and activation sequentially). The specific surface area and pore volume increased first and then decreased, with the increase in activation holding time for both one-step and two-step activation methods. The specific surface area reached the maximum value with 2430 m2 g−1 for the one-step activation method and 2830 m2 g−1 for the two-step activation method. Additionally, their mass-specific capacitances were 178.8 F g−1 and 160.2 F g−1, respectively, under the current density of 1 A g−1. After 2000 cycles, the specific capacitance retentions were 92.9% and 91.3%.  相似文献   

15.
以胶态SiO2纳米粒子为模板,壳聚糖为碳源,ZnCl2为活化剂,制备了具有不同比表面积和孔体积的氮掺杂介孔碳。采用多种表征手段对碳材料的微观形貌、比表面积和孔道结构进行了表征,探究了壳聚糖与SiO2纳米粒子的比例以及ZnCl2活化剂对碳材料孔体积和比表面积的影响。结果表明,在未使用活化剂时碳材料(CSi-1.75)的孔体积高达4.53 cm3·g-1,但其比表面积最小(729 m2·g-1);使用ZnCl2作为活化剂制备的碳材料(CSi-1.75-Zn)比表面积为1032 m2·g-1,但其孔体积下降到1.99 cm3·g-1,且具有最多的吡啶氮和吡咯氮。在以6.0 mol·L-1 KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时,CSi-1.75-Zn的比电容为344 F·g-1,而CSi-1.75的比电容仅为255 F·g-1。这表明碳材料的比表面积对超级电容性能影响最大,而孔体积影响较小。电容贡献分析结果表明,相对于CSi-1.75,CSi-1.75-Zn的双电层电容和赝电容都得到了提高,这表明更大的比表面积和更多的吡啶氮和吡咯氮有利于提高碳材料的超级电容性能。  相似文献   

16.
碳纳米管的功能化及其电化学性能   总被引:8,自引:0,他引:8  
超级电容器作为一种新型的储能元件,以其快速储存、释放能量等优点,近年来成为各国科研工作的研究重点和焦点[1 ̄3],并在数据记忆存储系统、便携式仪器设备、后备电源、通讯设备、计算机、燃料电池、电动车混合电源等许多领域都有广泛的应用前景[4]。目前,超级电容器用的电极材  相似文献   

17.
For the first time, toxic bio-tars collected from the gasification of pine sawdust are used as the precursor for activated carbons. Various types of activation agents including KOH, K2CO3, H3PO4 and ZnCl2 were screened for obtaining superior activated carbons. When KOH was used as an activation agent, the obtained activated carbons exhibited high specific surface area and large mesopore volume. The activated carbons were further employed to be the electrode material of supercapacitors, and its specific capacitance reached up to 260 F g?1 at 0.25 A g?1 current density. Also, it showed an excellent rate performance from preserving a relatively high specific capacitance of 151 F g?1 at 50 A g?1. The assembled device also exhibited the good electrochemical stability with the capacity retention of 90% after 5000 cycles. Furthermore, the maximum energy density of the activated carbons in organic electrolyte reached 17.8 Wh kg?1.  相似文献   

18.
Activated nitrogen-doped carbons (ANCs) were prepared by carbonization/activation approach using aminated polyvinyl chloride (PVC) as precursor. ANCs exhibit larger porosities and higher specific surface areas than those of their nitrogen-free counterparts for the same KOH/carbon ratio. The specific surface area of ANC-1 is up to 1,398 m2 g?1 even at a low KOH/carbon ratio of 1:1. Fourier transform infrared spectroscopy investigation of the nitrogen-enriched resin precursor indicates the efficient dehydrochlorination of PVC by ethylenediamine at a low temperature. The nitrogen content and the population of nitrogen functionalities strongly depend on the KOH/carbon ratios and decrease drastically after KOH activation as seen from the elemental and X-ray photoelectron spectroscopy analysis. The surface concentration of N-6 and N-Q almost disappears and the dominant nitrogen groups become N-5 after KOH activation. The highest specific capacitance of ANCs is up to 345 F g?1 at a current density of 50 mA g?1 in 6 M KOH electrolyte. ANCs also exhibit a good capacitive behavior at a high scan rate of 200 mV s?1 and an excellent cyclability with a capacitance retention ratio as high as ~93 % at a current density of 2,000 mA g?1 for 5,000 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号