首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
合成了链酚胺型N3O配体N-(2-羟基苄基)-二乙烯三胺(HL),用元素分析,IR和1H NMR等手段进行了表征。用pH电位滴定法,在25±0.1℃,I=0.10(KNO3)条件下,研究了该配体质子化及其与Zn(Ⅱ)离子配位热力学。在25±0.1℃,I=0.10(KNO3),pH=7~9(50mmol·L-1缓冲溶液)范围内,通过分光光度法测定了配合物催化对硝基苯酚乙酸酯(NA)水解动力学,得到了NA催化水解二级反应速率常数kc。结果表明:Zn(Ⅱ)离子与配体的氨基和酚羟基配位之后,还与一个水分子配位。配位酚羟基和水分子的离解常数pKa值分别为5.22和9.47。在中性pH值可以产生亲核试剂Zn(Ⅱ)…-OH,对NA水解有较好的催化效果,pH=9.0时,kc=3.2×10-2mol-1·L-1·s-1。  相似文献   

2.
链酚胺型配体锌(Ⅱ)配合物模拟碳酸酐酶研究   总被引:1,自引:2,他引:1  
合成了酚胺型链状配体,N,N'-二(2-羟基苄基)丙二胺(H~2L)及其Zn(Ⅱ)配合物(ZnL),通过元素分析、IR和^1HNRM等手段进行了表征。采用pH电位滴定法,在25℃±0.1℃,I=0.1mol·dm^-^3(KNO~3)条件下,测定了配体的质子化常数以及配体与金属离子Zn(Ⅱ)配位反应平衡常数。讨论了配体与金属离子Zn(Ⅱ)的配位情况,得到了配位酚羟基的解离常数。运用分光光度法,在25℃±0.1℃,I=0.1mol·dm^-^3(KNO~3)条件下,在pH=5.5~9.0(50mmol·dm^-^3缓冲溶液)范围内,研究了配合物作为碳酸酐酶模拟物催化对-硝基苯酚乙酸酯(NA)水解动力学,得到了NA酯水解的配合物催化速率常数k~N~P。实验结果表明,ZnHL^+的配位酚羟基的解离常数pK~a为6.83;催化速率常数k~N~P与pH之间不存在Sigmoidal型曲线关系,而是在pH值中性附近有最大值,ZnHL^+对NA酯水解有很好的催化效果,并且采取双重催化机理,是碳酸酐酶很好的模拟物。  相似文献   

3.
合成了酚胺型链状配体,N,N'-二(2-羟基苄基)丙二胺(H~2L)及其Zn(Ⅱ)配合物(ZnL),通过元素分析、IR和^1HNRM等手段进行了表征。采用pH电位滴定法,在25℃±0.1℃,I=0.1mol·dm^-^3(KNO~3)条件下,测定了配体的质子化常数以及配体与金属离子Zn(Ⅱ)配位反应平衡常数。讨论了配体与金属离子Zn(Ⅱ)的配位情况,得到了配位酚羟基的解离常数。运用分光光度法,在25℃±0.1℃,I=0.1mol·dm^-^3(KNO~3)条件下,在pH=5.5~9.0(50mmol·dm^-^3缓冲溶液)范围内,研究了配合物作为碳酸酐酶模拟物催化对-硝基苯酚乙酸酯(NA)水解动力学,得到了NA酯水解的配合物催化速率常数k~N~P。实验结果表明,ZnHL^+的配位酚羟基的解离常数pK~a为6.83;催化速率常数k~N~P与pH之间不存在Sigmoidal型曲线关系,而是在pH值中性附近有最大值,ZnHL^+对NA酯水解有很好的催化效果,并且采取双重催化机理,是碳酸酐酶很好的模拟物。  相似文献   

4.
合成了不对称氮氧杂链型配体N-(2′-羟基)苄基乙醇胺(HL),通过元素分析、IR和 1H NMR等手段进行了表征。用pH电位滴定法,在25±0.1℃,I=0.10 (KNO3)条件下,研究了该配体质子化及其与Cu(Ⅱ)离子配位热力学。在25±0.1℃,I=0.10 (KNO3), pH=7~9 (50 mol·L-1缓冲溶液)范围内,通过分光光度法测定了配合物对p-硝基苯酚乙酸酯(NA)水解催化动力学,得到了NA酯催化水解二级反应速率常数kNP((mol·L-1)-1·s-1)。结果表明:Cu(Ⅱ)离子与醇羟基配位作用较强,并且还与一个水分子有较弱的配位。配位醇羟基和水分子的离解常数pKa分别为7.62和11.22。在中性pH值可以产生具有有很强亲核能力的配位烷氧负离子Cu(Ⅱ)…-OR,配合物对酯的水解有金属离子Lewis酸活化和亲核试剂进攻双重催化作用,与碱性磷酸酯催化作用比较类似,在pH中性和弱碱性条件下对NA酯水解有很好的催化效果,当pH为9.0时,kNP达到0.12 (mol·L-1)-1·s-1。  相似文献   

5.
在25±0.1℃,I=0.1 mol·dm-3 KNO3条件下,采用pH电位滴定法,测定了新型配体,N,N′-二-(2′-羟基)苄基-乙二胺(BEDA)和N,N′-二-(2′-羟基)苄基-二乙烯基三胺(BDTA)的质子化常数以及它们与Cu(Ⅱ)离子的配位平衡常数,并进一步求得了配合物Cu-BEDA和Cu-BDTA中酚羟基的离解常数pKa值。通过分光光度法,在25±0.1℃,I=0.1 mol·dm-3 KNO3,pH=7~9 (50 mmol·dm-3缓冲溶液)条件下,得到了配体的Cu(Ⅱ)配合物催化对-硝基苯酚乙酸酯(NA)水解的的催化速率常数kNP[(mol·dm-3)-1·s-1],结果表明这类配合物可以用作金属水解酶的模拟物,由催化机理出发对实验结果进行了解释。  相似文献   

6.
合成了大环三胺配体-1,4,7-三氮杂环癸烷([10]aneN3),并对文献方法进行了改进,简化了步骤,节省了溶剂。在25±0.1 ℃,离子强度I=0.10 mol·L-1 (KNO3)条件下,采用pH电位滴定法,测定了配体的质子化常数以及与Cu(Ⅱ)离子的配位平衡常数,讨论了配体与金属离子的配位情况。通过分光光度法,在pH值7~9范围内(2×10-4 mol·L-1 tris做为缓冲溶液),研究了配合物催化对-硝基苯酚乙酸酯(NA)水解动力学行为,得到了NA酯的水解速率常数kcat。结果表明催化水解速率对底物(NA)及配合物浓度均呈一级反应,水解反应遵循速率方程v=(kcatcCu2++kOH-cOH-+…)cNA;在中性和弱碱性条件下能很好的催化NA的水解,pH=9.19时,催化速率常数达到了4.405×10-2 mol-1·L·s-1,优于国际上同类研究报道的结果;催化反应受酸碱平衡控制。结合滴定结果,提出了催化反应机理。  相似文献   

7.
合成了链酚胺型 N3O配体 N-(2-羟基苄基 )-二乙烯三胺 (HL),用元素分析 ,IR和 1H NMR等手段进行了表征。用 pH电位滴定法,在 25± 0.1℃ ,I=0.10(KNO3)条件下,研究了该配体质子化及其与 Zn?离子配位热力学。在 25± 0.1℃ ,I =0.10(KNO3), pH =7~ 9(50mmol· L- 1缓冲溶液 )范围内,通过分光光度法测定了配合物催化对硝基苯酚乙酸酯 (NA)水解动力学,得到了 NA催化水解二级反应速率常数 kc。结果表明: Zn?离子与配体的氨基和酚羟基配位之后,还与一个水分子配位。配位酚羟基和水分子的离解常数 pKa值分别为 5.22和 9.47。在中性 pH值可以产生亲核试剂 Zn?…- OH,对 NA水解有较好的催化效果, pH=9.0时, kc=3.2× 10- 2mol- 1· L- 1· s- 1。  相似文献   

8.
用Ph电位滴定法研究了配体N-(2'-羟基)苄基乙醇胺(HL1)和N-(2-羟基苄基)-丙醇胺(HL1)与Zn(Ⅱ)离子2∶1配位热力学,合成了它们的配合物.在Ph=7~9(50mmol/L缓冲溶液)范围内,用分光光度法测定了配合物催化对-硝基苯酚乙酸酯(NA)水解动力学,得到了NA酯催化水解二级反应速率常数kc.结果表明:HL1和HL2的2∶1Zn(Ⅱ)配合物催化NA酯水解时,五配位配合物在催化过程中存在Zn(Ⅱ)...-OH和醇羟基的协同催化作用,反映了碱性磷酸酯酶的催化特性,具有非常好的催化效果,Ph为9.0时,kc分别可达0.266和0.219mol-1·L·s-1.  相似文献   

9.
郭惠  李珺  张逢星 《化学研究》2010,21(4):62-65,71
在25℃、离子强度I=0.10(KNO3)条件下,采用pH电位滴定法测定了大环三胺配体1,4,7-三氮杂环癸烷(TACD)与Zn(Ⅱ)离子的配位平衡常数,讨论了配体与金属离子的配位情况.利用分光光度法,在pH=7~9范围内[2×10-4mol.L-1三羟甲基氨基甲烷(tris)为缓冲溶液]研究了配合物在对硝基苯酚乙酸酯(NA)水解中的催化动力学行为,得到了NA酯的水解速率常数kcat.结果表明,催化水解速率对底物(NA)及配合物浓度均呈一级反应,水解反应遵循速率方程v=(kcat.cZn2++kOH-.cOH-+…).在中性和弱碱性条件下,配合物对NA酯的水解具有很好的催化作用,当pH=9.19时,催化速率常数达3.420×10-2mol-1.L.s-1;催化反应受酸碱平衡控制.  相似文献   

10.
运用pH电位滴定法,在25±0.1℃ T,I=0.1(KNO3)条件下,研究了Cu(Ⅱ)与三吡啶胺(L1)和队(2'-羟基苄基)-二乙二胺(HL2)的配位行为。结果表明,L1以二齿的形式和Cu(Ⅱ)形成稳定的2:1(L:M)配合物。其配位水分子的离解常数pKa为7.54.对于HL2,三个氮原子和酚氧负离子与Cu(Ⅱ)配位,酚羟基离解常数pKa为4.44.在25±0.1℃,I=0.1(KNO相似文献   

11.
丁玉洁  王扬 《无机化学学报》2011,27(7):1411-1416
通过双肟配体H4L(H4L=6,6′-二羟基-2,2′-[1,2-亚乙基二氧双(氮次甲基)]二酚)与水合乙酸铜反应,合成了一个新的铜配合物{[Cu(HL)(EtOH)]2Cu},并进行了元素分析、红外光谱和X-射线单晶衍射测定。结果表明,该配合物为三核结构,由3个Cu离子、2个配位的(HL)3-单元、2个配位的乙醇分子组成。且配合物通过分子间C-H…O氢键形成了一个二维超分子结构。  相似文献   

12.
高恩君  王克华  于影  尹洪喜  孙亚光 《化学学报》2007,65(16):1612-1616
合成了配合物[Co(qina)2(DMSO)2]单晶, 其中, qina为喹哪啶酸根, DMSO为二甲基亚砜. 配合物为单斜晶系, P2(1)/C空间群, 2个qina配体以氮原子和氧原子与Co(II)离子螯合配位, 2个DMSO以氧原子与Co(II)离子轴向配位, 形成规则的八面体构型配合物, 分子之间存在π-π堆积弱相互作用. 该配合物可显著提高乙酸-1-萘酯的水解速率, 在配合物浓度和萘酯浓度各为1.0×10-4和3.0×10-5 mol•L-1条件下, 酯的水解速率提高460倍.  相似文献   

13.
运用pH电位滴定法,在25±0.1℃,I=0.1(KNO3)条件下,研究了Cu(II)与三吡啶胺(L1)和N-(2′-羟基苄基)-二乙三胺(HL2)的配位行为.结果表明,L1以二齿的形式和Cu(II)形成稳定的2:1(L:M)配合物.其配位水分子的离解常数pKa为7.54.对于HL2,三个氮原子和酚氧负离子与Cu(II)配位,酚羟基离解常数pKa为4.44.在25±0.1℃,I=0.1(KNO3)条件下,pH=6~9(50mol·L-1)范围内,用紫外-可见分光光度法研究了L1的Cu(II)配合物催化对-硝基苯酚乙酸酯(NA)水解动力学行为,发现配合物催化NA酯水解反应速率常数kNP与溶液pH呈Sigmoidal型曲线,kNP最大值为2.53×10-2L·mol-1·s-1.说明L1的Cu(II)配合物中的Cu(II)-OH-是有效的亲核试剂,对底物NA酯的水解有较好的催化作用.  相似文献   

14.
以两性羧酸配体溴化N-(4-羧基苄基)异喹啉((HCbiq)Br)合成了4个新的金属配合物:[Cu2(Cbiq)4(H2O)2]Br4·2H2O(1)、[Zn(Cbiq)2(H2O)2]Br2·Cbiq·H2O(2)、[M3(Cbiq)8(μ-OH)2(H2O)2](ClO4)4·7H2O(M=Co(3)、Mn(4))。通过单晶X射线衍射、元素分析和红外光谱表征了配合物1~4的结构。配合物1含有一个由4个Cbiq的羧基桥联双核Cu(Ⅱ)的结构,2个Cu(Ⅱ)还分别与一分子水配位。配合物2中,1个Zu(Ⅱ)分别与2个Cbiq的羧基氧原子进行单齿配位,同时还与2个水分子的氧原子进行配位。配合物34结构相似,均为三核结构。每2个M(Ⅱ)除了通过2个Cbiq的羧基上的氧进行桥联,还通过一个羟基的氧进行桥联。此外,2个端基的M(Ⅱ)分别与2个Cbiq的羧基进行单齿配位,同时还与一个水分子进行配位。凝胶电泳研究表明,配合物1可能是通过氧化机制在生理条件下有效切割DNA,其最大催化速率常数kmax为2.80h-1,米氏常数KM为3.22mmol·L-1。溴化乙锭(EB)竞争实验表明配合物1具有较强的DNA结合亲和力。采用分子对接模拟计算得到配合物1与DNA的结合自由能为-49.87kJ·mol-1。  相似文献   

15.
合成了链型五齿配体N-(2-羟乙基)-N”-(2-羟基苄基)-二乙烯三胺(HL),通过元素分析、IR和1H NMR 等手段进行了表征。用 pH电位滴定法,在 25 ± 0. 1℃, I= 0. 10(KNO3)条件下,测定了配体的质子化常数以及 配体与Cu(Ⅱ)和Zn(Ⅱ)配位反应平衡常数。讨论了配体与金属离子的配位情况,得到了配位酚羟基和水的离解 常数。运用分光光度法,在 pH= 7. 0- 9. 0范围内,研究了配合物催化对硝基苯酚乙酸酯(NA)水解动力学,得到 了 NA酯水解的配合物催化速率常数 kc。结果表明,Cu(Ⅱ)与配体的氨基和酚羟基配位,生成四配位配合物,配 位酚羟基的 p Ka值为 4. 79,对 NA酯水解基本上没有催化效果;而 Zn(Ⅱ)则可以分别与配体的三个氨基,一个 酚羟基和一个溶剂水分子配位,形成五配位配合物,配位酚羟基和水的 p Ka分别为 5. 99和 9. 17,催化 NA酯 水解时,存在 Zn(Ⅱ)…-OH和酸羟基的协同作用,有很好的催化效果,pH为 9. 0时, kc可达 8. 50 × 10-2 mol-1· L· s- 1。  相似文献   

16.
合成并表征了在大环侧臂引入取代苯酚作为功能基团的新型四氮大环配体(L1,L2和L3).对配体L3的质子化过程及其与Zn(Ⅱ)的配位过程的研究表明,配体中的酚羟基与四氮大环环中的质子之间存在较强的氢键.测得配体及配合物中酚羟基的pKa分别为8.3和8.5.考察了上述3个配体的Zn(Ⅱ)配合物作为水解锌酶的模拟物催化对硝基苯酚乙酸酯(NA)水解的动力学行为,测得它们催化NA水解的二级反应速率常数kc/[(mol/L-1·s-1]分别为3.48×10-2、1.52×10-2和2.85×10-2.  相似文献   

17.
以两性羧酸配体溴化N-(4-羧基苄基)异喹啉((HCbiq) Br)合成了4个新的金属配合物:[Cu2(Cbiq)4(H2O)2]Br4·2H2O (1)、[Zn (Cbiq)2(H2O)2]Br2·Cbiq·H2O (2)、[M3(Cbiq)8(μ-OH)2(H2O)2](ClO4)4·7H2O (M=Co (3)、Mn (4))。通过单晶X射线衍射、元素分析和红外光谱表征了配合物1~4的结构。配合物1含有一个由4个Cbiq的羧基桥联双核Cu (Ⅱ)的结构,2个Cu (Ⅱ)还分别与一分子水配位。配合物2中,1个Zn (Ⅱ)分别与2个Cbiq的羧基氧原子进行单齿配位,同时还与2个水分子的氧原子进行配位。配合物34结构相似,均为三核结构。每2个M (Ⅱ)除了通过2个Cbiq的羧基上的氧进行桥联,还通过一个羟基的氧进行桥联。此外,2个端基的M (Ⅱ)分别与2个Cbiq的羧基进行单齿配位,同时还与一个水分子进行配位。凝胶电泳研究表明,配合物1可能是通过氧化机制在生理条件下有效切割DNA,其最大催化速率常数kmax为2.80 h-1,米氏常数KM为3.22 mmol·L-1。溴化乙锭(EB)竞争实验表明配合物1具有较强的DNA结合亲和力。采用分子对接模拟计算得到配合物1与DNA的结合自由能为-49.87 kJ·mol-1。  相似文献   

18.
以2-(对甲基苯甲酰基)苯甲酸(2-PMBBA)和1,10-邻菲啰啉(Phen)为配体合成了一个新的锌(Ⅱ)配合物Zn(2-PMBBA)2(Phen)。该配合物晶体属正交晶系,空间群Pccn,晶胞参数:a=1.3716(4)nm,b=1.3368(4)nm,c=1.9287(5)nm,V=3.5364(17)nm3,Dc=1.360g·cm-3,Z=4,μ(Mo)=0.746mm-1,F(000)=1496,最终偏离因子R1=0.0358,wR2=0.0861。在标题配合物中,中心锌(Ⅱ)离子的配位数是4,处于变形的四面体配位环境中,这是不多见的。本工作还测定了标题配合物的电化学、磁性及荧光性能。结果表明:循环伏安过程中,配合物的电子转移是不可逆的,对应的电极反应是Zn(Ⅱ)/Zn(0);在300~7K,配合物有抗磁性;当激发波长为224nm时,配合物在450和472nm处有强的荧光发射峰。  相似文献   

19.
大环钴(Ⅱ)配合物模拟水解酶催化羧酸酯水解的比较研究   总被引:4,自引:0,他引:4  
在Brij35胶束溶液中,比较研究了四氮大环席夫碱(5,7,7,12,14,14-六甲基-1,4,8,11-四氮杂十四环-二烯,L)的钴(Ⅱ)配合物1催化对硝基苯酚吡啶甲酸酯(PNPP)及对硝基苯酚乙酸酯(PNPA)水解的动力学。结果表明:配合物1对PNPP及PNPA的催化作用具有酸碱催化的特征,催化活性物种为与金属离子结合的氢氧根离子CoL-OH-;配合物1催化PNPP水解的速度远远大于其催化PNPA水解的速度,在pH 7.40、30℃时,表观二级速率常数kc分别为0.997mol-1·L·s-1和1.12×10-3mol-1·L·s-1,这种反应速率的差异可归因于反应机理的不同;Brij35胶束对PNPP及PNPA的水解均有抑制作用。  相似文献   

20.
本文通过修饰邻香草醛芳环上羟基的方法,得到两种Schiff碱配体:N,N'-二(2-氧乙酸-3-甲氧基)苄叉乙二胺(H2L1)和N,N′-二(2-氧乙酸-3-甲氧基)苄叉1,3-丙二胺(H2L2),利用水热合成方法以新合成的配体为基点设计合成了2个新的六配位Schiff碱锌(Ⅱ)配合物[Zn(L1)]·7H2O(1)和[Zn(L2)]·7H2O(2),通过元素分析、红外光谱和核磁共振光谱等测试手段对配合物进行了表征,并用X射线单晶衍射测得Zn(Ⅱ)配合物的晶体结构。X射线晶体学研究表明两种配合物晶体结构中都包含多个溶剂水分子,配合物1是以Zn(Ⅱ)为中心扭曲的三方棱柱构型,配合物2构型是以Zn(Ⅱ)为中心扭曲的八面体构型。初步研究了两种配合物的固体发光性,结果表明这两种配合物具有良好的光致发光的性能,有望在光学材料方面得到应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号