首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
采用银修饰介孔磷钨酸/二氧化硅(mesoporous HPW/SiO2)催化剂,并研究了其在模拟柴油和真实柴油氧化脱硫反应中的催化性能。通过银修饰介孔HPW/SiO2,结合银离子对有机硫化物的选择吸附性和HPW对有机硫化物的催化氧化活性,以达到选择氧化脱硫的目的。模拟柴油分别采用石油醚、苯、1-辛烯和二苯并噻吩配制,当银离子与HPW的摩尔比为2时,催化剂具有最高的选择催化氧化活性。采用N2 吸附-脱附、XRD、UV-vis和EDS表征了银修饰的介孔HPW/SiO2催化剂,结果表明,银物种分散均匀且以Ag+形式存在。真实柴油的脱硫研究表明,相比介孔HPW/SiO2催化剂,修饰的催化剂介孔Ag2-HPW/SiO2脱硫率提高了4.6%,初始硫含量为1800×10-6的直馏柴油能被脱除至228×10-6,脱硫率为87.3%。介孔Ag2-HPW/SiO2催化剂具有良好的再生性能,经再生处理后,Ag的损失量极少,其三次脱硫率达到84.8%。  相似文献   

2.
A new solid acid catalyst, consisting of 12‐phosphotungstic heteropoly acid (HPW) supported on graphene oxide/silica nanocomposite (GO@SiO2), has been developed via immobilizing HPW onto an amine‐functionalized GO/SiO2 surface through coordination interaction (GO@SiO2‐HPW). The GO@SiO2‐HPW nanocomposite was characterized by Fourier transform infrared (FT‐IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and powder X‐ray diffraction (XRD). The prepared nanocomposite could be dispersed homogeneously in water and further used as a heterogeneous, reusable, and efficient catalyst for the synthesis of benzimidazoles and benzothiazoles by the reaction of 1,2‐phenelynediamine or 2‐aminothiophenol with different aldehydes.  相似文献   

3.
An adsorbent catalyst was proposed to reduce the leaching of active species of the catalyst and enhance the kinetics of the oxidative desulfurization (ODS) reaction of dibenzothiophene (DBT) from model diesel fuel. By loading phosphotungstic acid (HPW) species onto a zirconium-modified hexagonal mesoporous silica (Zr-HMS), a novel catalyst was synthesized and utilized for the ODS process. An ultrafast ODS kinetics was specifically identified using 20%HPW/Zr-HMS as catalyst. Within 30 min, more than 95% of the 350 ppm DBT content of the model fuel was oxidized by H2O2. The synthesized catalyst retained its sulfur removal ability even after five subsequent ODS reactions and the leaching of HPW species was found to be suppressed successfully. Overall, this new reusable catalyst provided an alternative for highly efficient ultra-deep desulfurization process.  相似文献   

4.
A heterogeneous catalyst (HPW/mpg‐C3N4) for the alkylation of o‐xylene and styrene reaction was acquired by the immobilization of phosphotungstic acid (HPW) on mesoporous graphitic carbon nitride (mpg‐C3N4) through electrostatic interaction. The results of Fourier transform infrared spectroscopy (FT‐IR), X‐ray powder diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) proved that HPW was successfully immobilized on the protonated mpg‐C3N4 by electrostatic interaction. The textural properties and morphology of HPW/mpg‐C3N4 were characterized by N2 adsorption–desorption, scanning electron microscopy (SEM). Among them, 40% HPW/mpg‐C3N4 displays the best catalytic performance in the alkylation reaction with 91.8% yield and 96.5% selectivity to 1, 2‐diphenylethylane. Moreover, protonated mpg‐C3N4 not only displays as a support to facilitate great dispersion of HPW but also promotes the alkylation product diffusion effectively. Besides, the HPW/mpg‐C3N4 catalyst could be recycled easily without significant loss of catalytic activity, which is demonstrate by the recyclability of HPW/mpg‐C3N4 catalyst test.  相似文献   

5.
Solid catalysts consisting of polyoxometalates (POM) namely phosphotungstic acid H3PW12O40 (HPW) supported on a mesoporous sieve MCM‐41 have been prepared and characterized by FT‐IR, X‐ray diffraction, nitrogen adsorption and high resolution transmission electron microscope (HRTEM). The HPW/MCM‐41 with different HPW loadings from 10 to 60 wt% possess large specific surface area and rather uniform mesopores. Keggin structure of HPW retains on the prepared composite catalysts. The photocatalytic performance of HPW/MCM‐41 was examined by degradation of a durable pesticide imidacloprid. It is found that the prepared photocatalysts exhibit high activity under irradiation of 365 nm monochromatic light. For 50 mL of imidacloprid (10 mg/L), conversion of imidacloprid using 20 mg of HPW/MCM‐41 with 50 wt% loading level and calcined at 300°C reaches 58.0% after 5 h irradiation.  相似文献   

6.
通过共浸渍法合成了一系列担载型杂多酸银盐催化剂AgxH3-xPW/SiO2 (x=0.5, 1.0, 1.5, 2.0, 2.5, 3.0),由于催化剂在极性溶剂中的不溶性, 在合成聚四氢呋喃的反应中显示了高反应活性和稳定性能. Ag离子取代含量和银盐的担载量对催化剂活性会产生显著影响. Ag 离子含量的不同会导致磷钨酸银盐的晶相结构和催化剂的酸性质发生变化. x=2.0 时, 催化剂Ag2HPW/SiO2达到最大酸强度和最高催化聚合反应活性. 当银盐Ag2HPW的担载量为30% (质量分数)时, 催化剂能达到高分散度和高的四氢呋喃聚合反应活性. 与普通二氧化硅担载的磷钨酸催化剂HPW/SiO2对比, 担载型磷钨酸银盐30%Ag2HPW/SiO2拥有优异的重复使用性能, 循环4 次后催化活性只有轻微下降. 通过引入Ag离子合成的新型担载磷钨酸银盐30%Ag2HPW/SiO2, 反应稳定性能明显改进, 得到拥有稳定平均分子量的产物聚四氢呋喃.  相似文献   

7.
An amphiphilic paradodecatungstate catalyst, [(C18H37)2N(CH3)2]9[NaH2W12O42] was prepared and characterized by Fourier transform infrared spectroscopy, UV–visible spectrum, differential thermal analysis, and thermogravimetric analysis. The amphiphilic catalyst exhibits very high catalytic activity that dibenzothiophene (DBT) in model diesel can be oxidized into dibenzothiophene sulfones using hydrogen peroxide as an oxidant. The reactivity of sulfur compounds decreased in the order of DBT > 4,6-DMDBT > BT > 5-MBT. The reaction rates of these sulfur compounds are sensitive to the electron density on sulfur atoms and the steric hindrance of the substituted groups of sulfur compounds. The sulfur level of a commercial diesel after desulfurization can drop from 200 ppm to about 12 ppm.  相似文献   

8.
A facile avenue to fabricate micrometer‐sized chiral (L ‐, D ‐) and meso‐like (dl ‐) SiO2 materials with unique structures by using crystalline complexes (cPEI/tart), composed of comblike polyethyleneimine (cPEI) and L ‐, D ‐, or dl ‐tartaric acid, respectively, as catalytic templates is reported. Interestingly, both chiral crystalline complexes appeared as regularly left‐ and right‐twisted bundle structures about 10 μm in length and about 5 μm in diameter, whereas the dl ‐form occurred as circular structures with about 10 μm diameter. Subsequently, SiO2@cPEI/tart hybrids with high silica content (>55.0 wt %) were prepared by stirring a mixture containing tetramethoxysilane (TMOS) and the aggregates of the crystalline complexes in water. The chiral SiO2 hybrids and calcined chiral SiO2 showed very strong CD signals and a nanofiber‐based morphology on their surface, whereas dl ‐SiO2 showed no CD activity and a nanosheet‐packed disklike shape. Furthermore, metallic silver nanoparticles (Ag NPs) were encapsulated in each silica hybrid to obtain chiral (D and L forms) and meso‐like (dl form) Ag@SiO2 composites. Also, the reaction between L ‐cysteine (Lcys) and these Ag@SiO2 composites was preliminarily investigated. Only chiral L ‐ and D ‐Ag@SiO2 composites promoted the reaction between Lcys and Ag NPs to produce a molecular [Ag–Lcys]n complex with remarkable exciton chirality, whereas the reaction hardly occurred in the case of meso‐like (dl ‐) Ag@SiO2 composite.  相似文献   

9.
Supported nickel–molybdenum and nickel–tungsten hydrocracking catalysts prepared using a support that consists of 70% Al2O3 and 30% amorphous aluminosilicate were characterized by nitrogen and mercury porosimetry, IR spectroscopy of adsorbed CO, and high-resolution electron microscopy. The catalytic tests in hydrocracking of vacuum gas oil containing 3.39% sulfur showed that the nature of the hydrogenating component (NiMo or NiW) only slightly influences the vacuum gas oil conversion and the diesel fraction yield, but noticeable influences the properties of the diesel fraction obtained. The catalyst NiMo/Al2O3–amorphous aluminosilicates, compared to NiW/Al2O3–amorphous aluminosilicates, ensures lower sulfur content in the diesel fraction obtained, whereas the catalyst NiW/Al2O3–amorphous aluminosilicates allows obtaining a diesel fraction with lower content of polyaromatic compounds.  相似文献   

10.
Heteropolyacid-based catalysts with molecular level distributions of surface functionalities were synthesized by anchoring phosphotungstic acid (HPW) onto the pentaethylenehexamine (PEHA) layers stabilized by platelet ZrSBA-15 with short mesochannels. Namely, the presence of zirconium species in pore walls could significantly improve the surface acidity to attract and stabilize PEHA species, leading to a stronger interaction between them and a superiority to make HPW species highly stable. Standard characterizations of XRD, SEM, TEM, FT-IR, TG, N2 adsorption–desorption and N elemental analyses were preserved to demonstrate the synergistic effect. The resulting composite were investigated for the oxidation of benzaldehyde to benzoic acid in the H2O2-mediated environment, the catalyst 25 % HPW/PEHA/ZrSBA-15 screened high yield for benzoic acid (~99.7 %). Besides, various reaction parameters such as reaction temperature, reaction time, the amount of hydrogen peroxide and catalyst reusability were also investigated for the oxidation of benzaldehyde to benzoic acid with a target to confirm the validity of the catalyst.  相似文献   

11.
Microcrystalline cellulose (MCC), prepared from natural cellulose through acid hydrolysis, has been widely used in the food, chemical and pharmaceutical industries because of its high degree of crystallinity, small particle size and other characteristics. Being different from conventional mineral acids, phosphotungstic acid (H3PW12O40, HPW) was explored for hydrolyzing cellulose selectively for the preparation of MCC in this study. Various reaction parameters, such as the acid concentration, reaction time, temperature and solid-liquid ratio, were optimized. Rod-like MCC was obtained with a high yield of 93.62 % and also exhibited higher crystallinity and narrower particle diameter distribution (76.37 %, 13.77–26.17 μm) compared with the raw material (56.47 %, 32.41–49.74 μm) at 90 °C for 2 h with 58 % (w/w) HPW catalyst and a solid-liquid radio of 1:40. Furthermore, HPW can easily be extracted and recycled with diethyl ether for four runs without affecting the quality of the MCC products. The technology of protecting the crystalline region while selectively hydrolyzing the amorphous region of cellulose as much as possible by using HPW is of great significance. Due to the strong Brønsted acid sites and highest activity in solid heteropoly acid, the use of effective homogeneous HPW may offer an eco-friendly and sustainable way to selectively convert fiber resources into chemicals in the future.  相似文献   

12.
A novel magnetic material Fe3O4/SiO2/P(MAA‐co‐VBC‐co‐DVB) was prepared via the hypercrosslinking of its precursor which was produced via precipitation polymerization of methacrylic acid (MAA), vinylbenzyl chloride (VBC), and divinylbenzene (DVB) in the presence of Fe3O4/SiO2 submicrospheres with the surface containing abundant reactive double bonds. The resultant sorbent was characterized by scan electron microscopy, N2 adsorption, and Fourier transform infrared spectroscopy. It was found that this material had remarkable features such as large surface area (500 m2/g) and pore volume (0.32 cm3/g), as well as desirable chemical composition (including hydrophobic and ion‐exchange moieties). Taking advantages of the Fe3O4/SiO2/P(MAA‐co‐VBC‐co‐DVB), a magnetic SPE (MSPE) coupled with capillary electrophoresis (CE) method was developed for the determination of illegal drugs in urine samples. The extraction time could be clearly shortened up to 3 min. The recoveries of these drug compounds were in the range of 84.0–123% with relative standard deviations ranging between 1.7 and 10.5%; the limit of detection was in the range of 4.0–6.0 μg/L. The proposed method is simple, effective, and low‐cost, and provides an accurate and sensitive detection platform for abused drug analysis.  相似文献   

13.
Pure tungstophosphoric acid, potassium tungstophosphate, and cesium tungstophosphate with varying extent of substitution of protons by Cs or K ions x (x = 1, 2, 2.5, and 3) have been prepared and are supported on silica by the wet impregnation method. The extent of loading was fixed at 20 wt %. For the sake of comparison, unloaded Cs x and K x (x = 1) salts of tungstophosphoric acid were prepared by the precipitation method. The supported catalysts were characterized by FT-IR, XRD, specific surface area measurements, and catalytic conversion of tert-butanol. The results revealed that the catalytic conversion of tert-butanol proceeds mainly via dehydration yielding isobutene. The Cs1PW/SiO2, HPW/SiO2, and K1PW/SiO2 catalysts were more active than their unsupported samples. The previous solids showed greater catalytic activity and stability. Unexpectedly, substitution of one proton of tungstophosphoric acid by a cesium or potassium ion exerted no measurable effect on the catalytic activity of the treated solids, in spite of decreasing the Brønsted acidity of Cs1PW/SiO2 and K1PW/SiO2 indicating that the acidity of HPW/SiO2 decrease may be due to the interaction between HPW and the SiO2 surface. On the other hand, significant decrease in the catalytic activity took place upon increasing the cation content (x) to x = 2, 2.5, and 3.  相似文献   

14.
A surface carbamazepine‐imprinted polymer was grafted and synthesized on the SiO2/graphene oxide surface. Firstly SiO2 was coated on synthesized graphene oxide sheet using the sol–gel technique. Prior to polymerization, the vinyl group was incorporated on to the surface of SiO2/graphene oxide to direct selective polymerization on the surface. Methacrylic acid, ethylene glycol dimethacrylate and ethanol were used as monomer, cross‐linker and porogen, respectively. Nonimprinted polymer was also prepared for comparison. The properties of the molecularly imprinted polymer were characterized using field‐emission scanning electron microscopy and Fourier‐transform infrared spectroscopy. The surface molecularly imprinted polymer was utilized as an adsorbent of dispersive solid‐phase extraction for separation and preconcentration of carbamazepine. The effects of the different parameters influencing the extraction efficiency, such as sample pH were investigated and optimized. The specificity of the molecular imprinted polymer over the nonimprinted polymer was examined in absence and presence of competitive drugs. The carbamazepine calibration curve showed linearity in the ranges 0.5–500 μg/L. The limits of detection and quantification under the optimized conditions were 0.1 and 0.3 μg/L, respectively. The within‐day and between‐day relative standard deviations (n = 3) were 3.6 and 4.3%, respectively. Furthermore, the relative recoveries for spiked biological samples were above 85%.  相似文献   

15.
Silicic acid produced from sodium metasilicate hydrate and metallocene polyethylene–octene elastomer (POE) were chosen as the ceramic precursor and the continuous phase, respectively, for preparation of new hybrids by an in situ sol–gel process. To obtain a better hybrid, the acrylic acid‐grafted polyethylene–octene elastomer (POE‐g‐AA) prepared in our laboratory and used as the continuous phase was also investigated. Characterizations of POE/SiO2 and POE‐g‐AA/SiO2 composites were performed by Fourier transform infrared spectroscopy, 29Si solid‐state nuclear magnetic resonance (NMR) spectrometry, X‐ray diffractometry, differential scanning calorimetry, thermogravimetry analysis, and an Instron mechanical tester. The POE‐g‐AA/SiO2 hybrid could give the positive effect on the properties of POE/SiO2 hybrid because the carboxylic acid groups of acrylic acid should act as coordination sites for the silica phase to form chemical bonds. The result of 29Si solid‐state NMR spectra showed that Si atom coordination around SiO4 units is predominantly Q3 and Q4. Also, the POE‐g‐AA/SiO2 hybrid with 15 wt % SiO2 gave the maximum values of tensile strength and glass‐transition temperature because excess particles might cause the separation between the organic and inorganic phases when the silica content was beyond this point. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 351–359, 2003  相似文献   

16.
A novel, simple, and effective ion‐pair cloud‐point extraction coupled with a gradient high‐performance liquid chromatography method was developed for determination of thiamine (vitamin B1), niacinamide (vitamin B3), pyridoxine (vitamin B6), and riboflavin (vitamin B2) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion‐pair formation approach between these ionizable analytes and 1‐heptanesulfonic acid sodium salt as an ion‐pairing agent. Influential variables on the ion‐pair cloud‐point extraction efficiency, such as the ion‐pairing agent concentration, ionic strength, pH, volume of Triton X‐100, extraction temperature, and incubation time have been fully evaluated and optimized. Water‐soluble vitamins were successfully extracted by 1‐heptanesulfonic acid sodium salt (0.2% w/v) as ion‐pairing agent with Triton X‐100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r2 > 0.9916) and precision in the concentration ranges of 1‐50 μg/mL for thiamine and niacinamide, 5–100 μg/mL for pyridoxine, and 0.5–20 μg/mL for riboflavin. The recoveries were in the range of 78.0–88.0% with relative standard deviations ranging from 6.2 to 8.2%.  相似文献   

17.
In this study, a silicic acid and tetra isopropyl ortho titanate ceramic precursor and a metallocene polyethylene‐octene elastomer (POE) or acrylic acid grafted metallocene polyethylene‐octene elastomer (POE‐g‐AA) were used in the preparation of hybrids (POE/SiO2? TiO2 and POE‐g‐AA/SiO2? TiO2) using an in situ sol‐gel process, with a view to identifying a hybrid with improved thermal and mechanical properties. Hybrids were characterized using Fourier transform infrared spectroscopy, 29Si solid‐state nuclear magnetic resonance (NMR), X‐ray diffraction, differential scanning calorimetry, thermogravimetry analysis, dynamic mechanical thermal analysis, and Instron mechanical testing. Properties of the POE‐g‐AA/SiO2? TiO2 hybrid were superior to those of the POE/SiO2? TiO2 hybrid. This was because the carboxylic acid groups of acrylic acid acted as coordination sites for the silica‐titania phase to allow the formation of stronger chemical bonds. 29Si solid‐state NMR showed that Si atoms coordinated around SiO4 units were predominantly Q3 and Q4. The 10 wt % SiO2? TiO2 hybrids gave the maximum values of tensile strength and glass transition temperature in both POE/SiO2? TiO2 and POE‐g‐AA/SiO2? TiO2. It is proposed that above this wt %, excess SiO2? TiO2 particles caused separation between the organic and inorganic phases. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1690–1701, 2005  相似文献   

18.
Three‐dimensional graphene‐supported mesoporous silica@Fe3O4 composites (mSiO2@Fe3O4‐G) were prepared by modifying mesoporous SiO2‐coated Fe3O4 onto hydrophobic graphene nanosheets through a simple adsorption co‐condensation method. The obtained composites possess unique properties of large surface area (332.9 m2/g), pore volume (0.68 cm3/g), highly open pore structure with uniform pore size (31.1 nm), as well as good magnetic separation properties. The adsorbent (mSiO2@Fe3O4‐G) was used for the magnetic solid‐phase extraction of seven pesticides with benzene rings in different aqueous samples before high‐performance liquid chromatography. The main parameters affecting the extraction such as adsorbent amount, volume of elution solvent, time of extraction and desorption, salt effect, oscillation rate were investigated. Under the optimal conditions, this method provided low limits of detection (S/N = 3, 0.525–3.30 μg/L) and good linearity (5.0–1000 μg/L, R2 > 0.9954). Method validation proved the feasibility of the developed adsorbent, which has a high extraction efficiency and excellent enhancement performance for pesticides in this study. The proposed method was successfully applied to real aqueous samples, and satisfactory recoveries ranging from 77.5 to 113.6% with relative standard deviations within 9.7% were obtained.  相似文献   

19.
Selenium (>50 ng) as selenite or selenate, and tellurium (1–15 μg) as tellurate may be determined by measuring the intensities of the Se2 and Te2, emissions, in a carbon cavity situated in a hydrogen—air flame. Certain organic compounds (e.g., citric acid, ascorbic acid and glucose) enhance the intensities, especially of tellurium.  相似文献   

20.
A selective and sensitive method was developed based on dispersive micro‐solid‐phase extraction for the extraction of hydroquinone, resorcinol, pyrocatechol and phenol from water samples prior to high‐performance liquid chromatography with UV detection. SiO2, SiO2@MPTES, and SiO2@MPTES@Au nanoparticles (MPTES = 3‐mercaptopropyltriethoxysilane) were synthesized and characterized by scanning electronic microscopy, thermogravimetric analysis, differential thermogravimetric analysis, and infrared spectroscopy. Variables such as the amount of sorbent (mg), pH and ionic strength of sample the solution, the volume of eluent solvent (μL), vortex and ultrasonic times (min) were investigated by Plackett–Burman design. The significant variables optimized by a Box–Behnken design were combined by a desirability function. Under optimized conditions, the calibration graphs of phenol and dihydroxybenzenes were linear in a concentration range of 1–500 μg/L, and with correlation coefficients more than 0.995. The limits of detection for hydroquinone, resorcinol, pyrocatechol, and phenol were 0.54, 0.58, 0.46, and 1.24 μg/L, and the limits of quantification were 1.81, 1.93, 1.54, and 4.23 μg/L, respectively. This procedure was successfully employed to determine target analytes in spiked water samples; the relative mean recoveries ranged from 93.5 to 98.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号