首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Novel crosslinked anion exchange membranes based on poly(phthalazinone ether ketone) (PPEK) were successfully prepared through chloromethylation, quaternization, membrane casting and OH‐ ionic exchange reaction from the quaternized PPEK (QPPEK) membrane. The quaternization was performed with N‐methylimidazolium (MIm) as ammonium agent and tetramethylethylenediamine (TMEDA) as crosslinking agent. The ion‐exchange capacity, swelling ratio (SR), water uptake (WU), and ionic conductivity of the QPPEK alkaline membranes have been systematically investigated. The results showed that QPPEK membranes have a high hydroxide conductivity and very low SR. For the QPPEK‐4 alkaline membrane with ion‐exchange capacity (IEC) 2.63 mmol/g, the WU was 35.8%, and the hydroxide conductivity was 0.028 S/cm at 30 °C and 0.032 S/cm at 70 °C, while its SR was only 7.6%. The thermal properties of the QPPEK alkaline membrane and CMPPEK were characterized using thermo‐gravimetric analysis measurements in a nitrogen atmosphere. The alkaline resistance of membrane QPPEK ?4 was also briefly investigated in 6 M KOH at 60 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1632–1638  相似文献   

2.
A series of crosslinked, ammonium‐functionalized, and partially fluorinated copolymers have been prepared and evaluated as anion exchange membranes. In order to investigate the effect of crosslinking on the membrane properties, precursor copolymers containing chloromethyl groups were crosslinked with various aliphatic diamines followed by quaternization with monoamines. Crosslinking was effective in lowering water absorbability at no expense of high hydroxide ion conductivity of the membranes. By tuning the degree of crosslinking (20 mol %) and crosslinker chain length (C6 and C8), the highest ion conductivity of 73 mS/cm (at 80°C in water) was achieved. Furthermore, alkaline stability of the membranes was also improved by the crosslinking; the remaining ion conductivity after the stability test (in 1 M potassium hydroxide at 80°C) was 8.2 mS/cm (after 1000 h) for the C6 crosslinked membrane and 1 mS/cm (after 500 h) for the uncrosslinked membrane, respectively. The ammonium groups attached with the crosslinkers seemed more alkaline stable than the uncrosslinked benzyltrimethylammonium groups, while the polymer main chain was intact under the harsh alkaline conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1059–1069  相似文献   

3.
The development of polymeric anion‐exchange membranes (AEMs) combining high ion conductivity and long‐term stability is a major challenge for materials chemistry. AEMs with regularly distributed fixed cationic groups, based on the formation of microporous polymers containing the V‐shape rigid Tröger's base units, are reported for the first time. Despite their simple preparation, which involves only two synthetic steps using commercially available precursors, the polymers provide AEMs with exceptional hydroxide conductivity at relatively low ion‐exchange capacity, as well as a high swelling resistance and chemical stability. An unprecedented hydroxide conductivity of 164.4 mS cm?1 is obtained at a relatively a low ion‐exchange capacity of 0.82 mmol g?1 under optimal operating conditions. The exceptional anion conductivity appears related to the intrinsic microporosity of the charged polymer matrix, which facilitates rapid anion transport.  相似文献   

4.
利用4,4?-二氟二苯砜(DFDPS)、9,9?-双(4-羟苯基)芴(BHPF)、2,2?-二(4-羟基苯基)丙烷(双酚A)及4,4?-(六氟异丙叉)双酚(双酚AF)为原料,制备了2类具有不同主链刚性的聚醚砜材料.以聚醚砜及其氯甲基化产物按一定质量比采用溶液浇铸法,制备了2类新型共混阴离子交换膜,并避免了成膜过程中的相分离现象.在高分子主链上通过引入双酚芴(BQPAES系列)及双酚A(BQPES系列)结构调整主链的刚性,探讨了主链刚性对性能的影响;表征了共混膜的离子交换容量(IEC)、吸水及溶胀特性与离子电导率,并考察了它们的耐水解和耐碱稳定性.结果表明:2种聚合物相容性良好,共混膜质地均一,柔韧透明,吸水率和溶胀率适中,均随着温度的升高逐渐增加、随着聚醚砜含量增加逐渐减小;在90?C时,离子电导率最高达到89 m S/cm.经过沸水处理24 h后,均保持高机械强度,失重率低于5%;经2 mol/L的Na OH溶液30?C处理168~240 h后离子电导率仍可保持65%~80%.由于含双酚芴结构的高分子主链具有更高的刚性,在类似IEC条件下,BQPAES膜显示了比BQPES膜更好的尺寸稳定性和化学稳定性,同时维持了较高的电导率水平.由此表明,复合处理及适度提高高分子主链的刚性,有利于提高膜的性能.  相似文献   

5.
Robust hydroxide conducting membranes are required for long‐lasting, low‐cost solid alkaline fuel cells (AFCs). In this study, we synthesize Nafion‐based anion exchange membranes (AEMs) via amination of the Nafion precursor membrane with 1,4‐dimethylpiperazine. This initial reaction produces an AEM with covalently attached dimethylpiperazinium cations neutralized with fluoride anions, while a subsequent ion exchange reaction produces a hydroxide ion conducting membrane. These AEMs possess high thermal stability and different thermal transition temperatures compared to Nafion, while small‐angle X‐ray scattering reveals a similar ionic morphology. The hydroxide ion conductivity of the Nafion‐based AEM is fivefold lower than the proton conductivity of Nafion at 80 °C and 90% relative humidity. More importantly, the hydroxide conductivity is insensitive to drying and rehydrating the membrane, which is atypical of other AEMs with quaternary ammonium cations. The high chemical and thermal stability of this hydroxide conducting Nafion‐based AEM provides a promising alternative for AFCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

6.
A series of comb-shaped poly(arylene ether sulfone)s containing pendant 2-methyl-3-alkylimidazolitun group(ImPAES-Cx,x=1,6,10)was prepared and characterized as novel anion exchange membranes.These Im-PAES-Cx membranes were obtained by benzylic bromination and imidazolium functionalization.The characteristic nano-phase separation structure was formed in membranes with longer alkyl side chains,as confmned by small-angle X-ray scattering.The nano-phase separation structures endowed ImPAES-Cx membranes with improved ionic conductivity,dimensional stability(at least 60% decrease water uptake and swelling ratio at 60℃)and mechanical properties,together with excellent alkaline stability.Especially,ImPAES-C6 membranes possessed enhanced hydroxide conductivity and chemical stability simultaneously.These results suggest that it is a feasible strategy to introduce appropriate length of alkyl side chains into anion exchange membranes(AEMs)to improve the performance.  相似文献   

7.
以2,6-二甲基聚苯醚(PPO)为原料, 经溴代及N-甲基咪唑季铵化反应, 制备了N-甲基咪唑季铵化PPO, 并进行了红外光谱(FTIR)和氢核磁共振波谱(1H NMR)表征.所得季铵化产物与聚乙烯醇(PVA)按不同比例共混后用戊二醛交联成膜, 在碱性液中浸泡转化为OH-型, 得到一系列阴离子交换膜.通过扫描电子显微镜(SEM) 、交流阻抗(AC)、拉伸实验和热重分析(TGA)等手段考察了膜的微观形貌及电导率、力学性能、热稳定性及耐碱性等性能.结果表明, 膜的外观形貌平整均一; 含水率为50.4%~151.2%; 溶胀度为79.2%~164.2%; 离子交换容量为0.47~1.52 mmol/g; 90℃时, M4膜的电导率高达49.1 mS/cm; 断裂伸长率达到128%, 极大改善了PPO膜应力易裂的状况.同时, N-甲基咪唑鎓基团分解温度达到170℃, 高于常用的阴离子交换膜中的季铵基团(120℃).在2 mol/L的NaOH溶液中浸泡192 h后, 电导率仅下降19%, 具备良好的耐碱性能力.  相似文献   

8.
A series of soluble, benzimidazole‐based polymers containing sulfonic acid groups (SuPBI) has been synthesized. SuPBI membranes resist extensive swelling in water but are poor proton conductors. When blended with high ion exchange capacity (IEC) sulfonated poly(ether ether ketone) (SPEEK), a polymer that has high proton conductivity but poor mechanical integrity, ionic crosslinks form reducing the extent of swelling. The effect of sulfonation of PBI on crosslinking in these blends was gauged through comparison with nonsulfonated analogs. Sulfonic acid groups present in SuPBI compensate for acid groups involved in crosslinking, thereby increasing IEC and proton conductivity of the membrane. When water uptake and proton conductivity were compared to the IEC of blends containing either sulfonated or nonsulfonated PBI, no noticeable distinction between PBI types could be made. Comparisons were also made between these blends and pure SPEEK membranes of similar IEC. Blend membranes exhibit slightly lower maximum proton conductivity than pure SPEEK membranes (60 vs. 75 mS cm?1) but had significantly enhanced dimensional stability upon immersion in water, especially at elevated temperature (80 °C). Elevated temperature measurements in humid environments show increased proton conductivity of the SuPBI membranes when compared with SPEEK‐only membranes of similar IEC (c.f. 55 for the blend vs. 42 mS cm?1 for SPEEK at 80 °C, 90% relative humidity). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3640–3650, 2010  相似文献   

9.
Synthesis and properties of a series of ammonium‐containing terpolymers (QPAF‐3) as anion conductive membranes are reported. The QPAF‐3s composed of perfluoroalkylene, alkylene, and ammonium‐functionalized phenylene groups without heteroatom linkages in the main chain were synthesized via nickel‐mediated polycondensation reaction, followed by chloromethylation, quaternization, and ion exchange reactions. Self‐standing, bendable membranes were obtained by solution casting. The QPAF‐3 membrane with optimized terpolymer composition and ion exchange capacity (1.46 meq g?1) showed high hydroxide ion conductivity (123 mS cm?1 in water at 80 °C). The alkaline stability test in 1 M KOH for 1000 h at 80 °C and the post‐test analysis with IR spectra and tensile strength suggested that ammonium groups were likely to be decomposed while the polymer main chain was chemically more robust. The presence of the alkylene groups in the terpolymers lowered solubility, glass transition temperature, and elongation property of the resulting membranes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1442–1450  相似文献   

10.
Ion segregation is critically important for achieving high ion conductivity for anion exchange membranes(AEMs).Herein,a new bisphenol monomer bearing ten electron-rich phenyl groups was designed and polymerized with various amounts of electron-deficient 4,4′-dihydroxydiphenylsulfone and 4,4′-difluorobenzophenone to yield dense and selective reaction sites for chloromethylation and quaternization.As the most challenging step,chloromethylation was optimized by tuning the reaction temperature,reaction time,and reactant ratios.Ion exchange capacity,water uptake,anion conductivity,mechanical stability,and alkaline stability of the resulting AEMs were characterized in detail.It is found that chloromethylation reaction needed to be carried out at low equivalent of chloromethylation agents to avoid undesirable crosslinking.The QA-PAEKS-20 sample with an IEC of 1.19 mmol·g^-1 exhibited a Cl^–conductivity of 11.2 mS·cm^-1 and a water uptake of 30.2%at80°C,which are promising for AEM applications.  相似文献   

11.
A series of sulfonated poly(phthalazinone ether phosphine oxide)s (sPPEPO) were prepared via aromatic nucleophilic substitution polycondensation of 4‐(4‐hydroxyphenyl) phthalazinone (HPPZ) with sulfonated bis(4‐fluorophenyl)phenyl phosphine oxide (sBFPPO) and bis(4‐fluorophenyl)phenyl phosphine oxide (BFPPO) at various ratios. The properties such as molecular weight, ion exchange capacity (IEC), swelling, thermal stability, proton conductivity, and morphology were investigated. sPPEPO with high IEC exhibited high proton conductivity while they still showed low swelling. Typically, sPPEPO with IEC of 1.54 and 1.69 meq/g exhibited high conductivity of 0.091 and 0.19 S/cm, and low swelling ratios of 14.3% and 19.5% at 80 °C, respectively. The low swelling was attributed to the strong intermolecular interaction including the electrostatic force and hydrogen bond. sPPEPO would be promising candidates used as polyelectrolyte membranes for fuel cells. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1758–1769, 2008  相似文献   

12.
In this study, new anion exchange membranes (AEM) based on crosslinked polybenzimidazole (m-PBI) with quaternary ammonium groups, crosslinkable allyl groups, and hydrophobic ethyl groups as side chains are synthesized and characterized. The AEMs are crosslinked by thermal thiol-ene reaction using a dithiol crosslinker. The ion exchange capacity (IEC) values and crosslinking density were controlled by the number of quaternary ammonium groups and allyl groups, respectively. The introduction of ethyl groups improved the solubility of ionic PBIs even at very low IEC values by eliminating the hydrogen bonding interaction of imidazole rings. This method allows ionic PBIs with broad IEC values, from 0.75 to 2.55 mmol/g, to be prepared. The broad IEC values were achieved by independently controlling the numbers of quaternary ammonium groups, allyl groups, and hydrophobic ethyl groups during preparation. The crosslinked ionic PBIs revealed hydroxide conductivity from 16 to 86 mS/cm at 80°C. The wet membranes also showed excellent mechanical strength with tensile strength of 12.2 to 20.1 MPa and Young's Modulus of 0.67 to 1.45 GPa. The hydroxide conductivity of a crosslinked membrane (0.40Q0.60Et1.00Pr, IEC = 0.95 mmol/g) decreased only 7.9% after the membranes was immersed in a 1.0 M sodium hydroxide solution at 80°C for 720 h. A single fuel cell based on this membrane showed a maximum peak power density of 136 mW/cm2 with a current density of 377 mA /cm2 at 60°C.  相似文献   

13.
In the field of the developments of next-generation polymer electrolyte membranes, high conductivity is often regarded as the first important performance requirement. There is still a huge challenge to face, which is hard to achieve the balance between high ion conductivity (mainly related to ion-exchange capacity [IEC]) and good mechanical-dimensional stability (represented by swelling ratio [SR]). Here, a family of crosslinked block polyelectrolytes consisting of hydrophobic rigid poly(arylene ether sulfone) segments to ensure enough dimensional stability and hydrophilic poly(phenylene oxide) segments bearing long-flexible chains with high-density multications to serve as crosslinker and carrier for ion transport are prepared. The polyelectrolyte with an IEC of 3.04 mmol g−1 exhibits a high hydroxide conductivity of 126 mS cm−1 and a low SR of 8.6% at 80 °C. No obvious degradation below 200 °C is observed, and maximum tensile strength reaches 28.4 MPa. As a conclusion, these crosslinked membranes based on well-designed block polyelectrolytes exhibit an excellent combination of high ion conductivity and good mechanical-dimensional stability to meet the performance requirements for the application of anion-exchange membranes. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 391–401  相似文献   

14.
制备了基于磺化聚芳醚砜(SPAES)及聚醚砜(PES)的填充型复合质子交换膜, 研究了其吸水率、 尺寸变化、 热-机械特性、 质子电导率、 甲醇透过性及稳定性等性能. 通过浸入沉淀相转化法, 采用磺化度分别为30%(S30), 40%(S40)及50%(S50)的SPAES与PES制备了系列微孔型复合质子交换膜 Sx-y(x为SPAES的磺化度, y为SPAES的质量分数); 然后利用真空抽滤法在微孔中填充S50制备了相应的填充型复合质子交换膜Sx-y+F50. 结果表明, 由于微孔的引入及皮层结构的存在, Sx-y膜在低离子交换容量(IEC)条件下仍具有较高的电导率、 优良的机械强度、 优异的化学稳定性及较低的甲醇透过性. 经S50填充后, Sx-y+F50膜的IEC及电导率明显提升, 甲醇透过率大幅下降, 但机械强度及化学稳定性未见劣化. 其中S30-40+F50膜(IEC=0.69 mmol/g)的综合性能最佳, 其质子电导率在90 ℃水中达到50.4 mS/cm; 经140 ℃水处理24 h后失重率仅为8.2%, 质子电导率降低仅9%; 经过芬顿试剂(3% H2O2, 20 mg/L FeSO4, 80 ℃, 1 h)处理后失重率仅为0.66%; 甲醇透过率仅为6.8×10-8 cm2/s.  相似文献   

15.
The lack of anion exchange membranes (AEMs) that possess both high hydroxide conductivity and stable mechanical and chemical properties poses a major challenge to the development of high-performance fuel cells. Improving one side of the balance between conductivity and stability usually means sacrificing the other. Herein, we used facile, high-yield chemical reactions to design and synthesize a piperidinium polymer with a polyethylene backbone for AEM fuel cell applications. To improve the performance, we introduced ionic crosslinking into high-cationic-ratio AEMs to suppress high water uptake and swelling while further improving the hydroxide conductivity. Remarkably, PEP80-20PS achieved a hydroxide conductivity of 354.3 mS cm−1 at 80 °C while remaining mechanically stable. Compared with the base polymer PEP80, the water uptake of PEP80-20PS decreased by 69 % from 813 % to 350 %, and the swelling decreased substantially by 85 % from 350.0 % to 50.2 % at 80 °C. PEP80-20PS also showed excellent alkaline stability, 84.7 % remained after 35 days of treatment with an aqueous KOH solution. The chemical design in this study represents a significant advancement toward the development of simultaneously highly stable and conductive AEMs for fuel cell applications.  相似文献   

16.
Anion‐exchange membranes containing pendant benzimidazolium groups were synthesized from polysulfone by chrolomethylation followed by nucleophilic substitution reaction with 1‐methylbenzimidazole. The structures of the polymers were characterized by 1H‐NMR and FTIR analysis. The resulting membranes showed high thermal stability below 200 °C. The values of water uptake and swelling degree increased with the ion‐exchange capacity of the polymeric membrane. The ionic conductivity was measured by means of impedance spectroscopy in aqueous solution of potassium hydroxide (10?4?10?1 M). The results show not only a clear correlation between the membrane's electrochemical behavior with the electrolyte solution embedded in the membrane, but also with the degree of the polysulfone's chloromethylation.Thus, the ionic conductivity increased more than two orders of magnitude when the degree of chloromethylation increased from 40 to 140%. Benzimidazolium‐functionalized polysulfones exhibited better thermal, mechanical, and electrochemical properties than the widely used polymeric membranes containing quaternary ammonium groups. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2363–2373  相似文献   

17.
近年来,阴离子交换膜燃料电池的发展受到了广泛关注。开发具有碱稳定性能优异,电导率高的阴离子交换膜(AEMs)材料成为了研究的热点。AEMs主要由聚合物骨架和阳离子基团组成,这两者是影响膜碱稳定性和电导率的重要因素。本文综述了季铵盐类阴离子交换膜聚合物骨架结构中含有醚氧键和不含醚氧键的烷基季铵盐AEMs、N-螺环季铵盐AEMs和环季铵盐AEMs的碱稳定性、电导率等性能;总结了不同骨架结构季铵盐AEMs碱稳定性的差异;分析了季铵盐的降解机理。同时对于含有季铵盐阳离子交换基团的AEMs的结构设计进行了分析和展望。  相似文献   

18.
The anion exchange membranes (AEMs) with both high ionic conductivity and alkali stability are always the research focus of the AEM fuel cells. Here, a novel nonplanar polymer for AEMs manufacture, mPBI‐TP‐x‐R, with excellent hydroxide stability and satisfactory processability is reported for the first time. The serial mPBI‐TP‐x resins with steric hindrance were prepared by copolymerization among 3,3′,4,4′‐tetraaminobiphenyl, isophthalic acid and tetraphenyl‐terephthalic acid (TP) in different ratios under microwave condensation. The copolymers mPBI‐TP‐x were quaternized at N1/N3‐sites of benzimidazole unit in backbone with alkyl groups (R?CH3, C2H5, n‐C3H7, or n‐C4H9) to prepare soluble ionomers, and the corresponding membranes in hydroxyl ion form were prepared by a solution casting method and subsequent ion‐exchange process. The chemical structure of all membranes was characterized using FTIR and 1H NMR spectroscopy. The properties of ion exchange capacity, water uptake, swelling ratio, tensile strength, ionic conductivity, and alkaline stability were measured. Among the prepared membranes, the mPBI‐TP‐15%‐(n‐Bu) exhibited the excellent alkaline stability (only degradation ca. 5% under 1M NaOH aqueous solution at 60 °C for 800 h) and satisfactory OH? conductivity (46.66 mS/cm at 80 °C). The current research provides a useful exploration to commercial application of alkaline fuel cell. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1087–1096  相似文献   

19.
为得到具有高电导率和稳定性的阴离子交换膜,采用两步聚合法合成了含芴的序列式聚芳醚砜,经付克氯甲基化、季铵化及碱化制备了季铵化聚芳醚砜,并以脂肪族二胺(N,N,N′,N′-四甲基丙二胺(TMPDA)及N,N,N′,N′-四甲基己二胺(TMHDA))为交联剂,通过直接交联及后交联法分别制备了2类序列交联型阴离子交换膜.制得的膜材料离子交换容量为1.59~2.12 mmol/g,柔韧结实.与具有相似离子交换容量的非交联膜相比,交联膜的抗溶剂性能、尺寸稳定性、离子电导率等性能均得到了提高.交联膜在高温水中的水解稳定性、强碱性条件下的化学稳定性显著增强.探讨了直接浇铸交联处理及成膜后交联处理2种交联方式对膜性能的影响,结果表明,后交联处理可以有效避免浇膜过程凝胶的形成,而且膜的稳定性相对于未交联膜有大幅度提高.尤其以TMHDA为交联剂的后交联膜的各项性能均优于相应非交联膜,IEC为2.17 mmol/g的PCL-M(H)膜,在30°C时吸水率为99%,膜径向尺寸变化率为15%,电导率为23.8 mS/cm,90°C时电导率达到82 mS/cm,经过4 mol/L的NaOH溶液室温处理240 h后,离子电导率损失为7.6%,100°C水处理24 h后重量损失为5.1%,表现出较好的稳定性.  相似文献   

20.
付凤艳  程敬泉  张杰  高志华 《应用化学》2020,37(10):1112-1126
近年来,阴离子交换膜燃料电池的发展受到了广泛关注。 开发具有碱稳定性能优异、电导率高的阴离子交换膜材料成为了研究的热点。 阴离子交换膜(AEM)主要由聚合物骨架和阳离子基团组成,除了聚合物骨架结构,离子交换基团是影响膜碱稳定性和电导率的重要因素,因此,设计离子基团是提高膜性能的重要手段之一。 本文综述了近年来功能基团分别为季铵、胍基、咪唑鎓盐、季鏻、金属配合物、N-螺环季铵盐、哌啶和吡咯等阳离子交换基团的AEM的研究进展,其中包括不同种类阳离子交换基团的AEM的结构,碱稳定性能和OH-电导率,同时对于含有阳离子交换基团的AEM的结构设计进行了分析和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号