首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
解晓明  张嘉琦 《应用化学》2022,39(10):1533-1542
水下黏合剂在生物医学和工程应用领域的需求越来越大。然而,目前报道的大多数水下黏合剂的制备方法中通常需要复杂的化学偶联或修饰,以及昂贵的构筑基元。本文利用低成本的葡萄籽提取物原花青素(PA)和商业化的聚乙二醇寡聚物(PEG)为构筑基元,发展了一种简单且经济的水下黏合剂的构筑策略,实现了在氢键作用下诱导仿生黏合剂生成。此黏合剂既可以在水上又可以在水下黏附不同材质的基底,且可重复使用。此外,易于制备的PA/PEG黏合剂也具有良好的抗菌活性和生物相容性。由于PA/PEG黏合剂具有制备简单、广谱黏附性、可循环使用和抗菌性等优点,将在医疗器械和制药应用中得到广泛应用。  相似文献   

2.
Adhesives/sealants are used after suturing to prevent leakage of cerebrospinal fluid from an anastomotic site. Commercial adhesives/sealants have been used to close the cerebral dura. However, swelling of the cured adhesives/sealants induces increased intracranial pressure and decreases the strength of the seal. In the present study, tissue adhesive hydrogels with improved swelling property using inclusion complex composed of α-cyclodextrin (αCD) and decyl group (C10)-modified Alaska pollock-derived gelatin (C10-ApGltn) with a high degree of substitution (DS) (>20 mol%) are developed. Viscosity of C10-ApGltn with a high DS solution remarkably decreased by the addition of αCD. The resulting αCD/C10-ApGltn adhesive hydrogel composed of αCD/C10-ApGltn inclusion complexes and poly(ethylene glycol) (PEG)-based crosslinker showed improved swelling property after immersion in saline. Also, the resulting adhesive has a significantly higher burst strength than fibrin-based adhesives and is as strong as a PEG-based adhesive. Quantitative analysis of αCD revealed that the improved swelling property of the resulting adhesive hydrogels is induced by the release of αCD from cured adhesive, and the subsequent assembly of decyl groups in the saline. These results suggest that adhesives developed using the αCD/C10-ApGltn inclusion complex can be useful for closing the cerebral dura mater.  相似文献   

3.
In recent years,the hydrogel-based tissue adhesives have been extensively investigated for their excellent biocompatibility and the ability to be administered directly within the adherent tissue.To meet the requirement for more controllable release in various physiological settings,the components of hydrogel adhesive should be more precisely tailored.In this work,the POSS-ace-PEG hydrogel adhesive was fabricated with the polyacetal dendrimer G1'-[NH3Cl]16 and poly(ethylene glycol) succinimidyl carbonate (PEG-SC) due to the regular peripheral amino structure of G1'-[NH3Cl]16.Rheological and adhesion tests demonstrated that the hydrogel adhesive had good mechanical and adhesive properties,which could effectively adhere to the pigskin and severed nerves.Moreover,the tissue adhesive exhibited good stability under neutral conditions and the rapid degradation under acidic conditions,allowing for the release of doxycycline hydrochloride (DOX) drug in response to pH.Together,these results suggested that the POSS-ace-PEG adhesive had the potential to provide an alternative to tissue adhesives for applications in pathological environments (inflammation,tumors,etc.).  相似文献   

4.
Wound dressings are vital for cutaneous wound healing. In this study, a bi‐layer dressing composed of polyvinyl alcohol/carboxymethyl cellulose/polyethylene glycol (PVA/CMC/PEG) hydrogels is produced through a thawing–freezing method based on the study of the pore size of single‐layer hydrogels. Then the physical properties and healing of full‐thickness skin defects treated with hydrogels are inspected. The results show that the pore size of the single‐layer PVA/CMC/PEG hyrogel can be controlled. The obtained non‐adhesive bi‐layer hydrogels show gradually increasing pore sizes from the upper to the lower layer and two layers are well bonded. In addition, bi‐layer dressings with good mechanical properties can effectively prevent bacterial penetration and control the moisture loss of wounds to maintain a humid environment for wounds. A full‐thickness skin defect test shows that bi‐layer hydrogels can significantly accelerate wound closure. The experiment indicates that the bi‐layer PVA/CMC/PEG hydrogels can be used as potential wound dressings.  相似文献   

5.
Relaxation processes accompany all stages of the lifetime of viscoelastic pressure-sensitive polymer adhesives, which can form strong adhesive joints with substrates of various chemical natures under application of a slight external pressure to the adhesive film for a few seconds. This review deals with comparison of the adhesion and relaxation properties of a number of typical pressure-sensitive adhesives based on polyisobutylene, butyl rubber, styrene-isoprene-styrene triblock copolymers, alkyl acrylate copolymers, and silicone adhesives as well as pressure-sensitive adhesives based on blends of high-molecular-mass polyvinylpyrrolidone with oligomeric poly(ethylene glycol). Within all three stages of the lifetime of adhesive joints (under adhesive-bond-forming pressure, upon withdrawal of contact pressure in the course of relaxation of the adhesive material, and under the force detaching an adhesive film from the substrate surface), the strength of adhesive joints has been shown to be controlled by large-scale relaxation processes, which are characterized by long relaxation times in the range 150–800 s. All examined pressure-sensitive adhesives can be arbitrarily divided into two groups. The first group is composed of fluid adhesives that relax comparatively fast and exhibit no residual (unrelaxed) stress. The second group includes elastic adhesives capable storing mechanical energy in the course of deformation that are characterized by appreciably longer relaxation times and display residual stress after relaxation. Conditions of adhesive debonding (e.g., strain amplitude and deformation velocity) significantly affect the relaxation process.  相似文献   

6.
The adhesive properties of blends of high molecular weight poly(vinyl pyrrolidone) (PVP) and low molecular weight poly(ethylene glycol) (PEG) were systematically investigated with a probe test and correlated with their viscoelastic properties. The material parameters that were varied were the PEG content (31–41 wt %) and the hydration rate. The 36% PEG showed the best balance of properties for a pressure‐sensitive adhesive. At low debonding rates, the debonding took place through the formation of a fibrillar structure, whereas at high debonding rates, the debonding was brittle. This transition was attributed to the breakage and reformation of hydrogen bonds between PVP units and OH groups on PEG during the large strain of the polymer chains in elongation. This transition was observed, albeit shifted in frequency, for all three compositions, and the characteristic relaxation times of the hydrogen‐bonded network were estimated. A comparison between the tack properties of the adhesives and their linear viscoelastic properties showed a very strong decoupling between the small‐strain and large‐strain properties of the adhesive, which was indicative of a pronounced deviation from rubber elasticity in the behavior of the blends. This deviation, also seen during tensile tests, was attributed to the peculiar phase behavior of the blends. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2395–2409, 2002  相似文献   

7.
Wound refers to the place where human body is injured and ruptured. So, wounds in a broad sense include not only skin wounds, but also damages of muscle, corneal, heart, and lung, etc. As “gold standard” of wound closure, suture and staple cause secondary damage to the tissue, and require professional skills and equipment, so noninvasive hydrogel adhesives have been developed as an alternative to close and treat different kinds of wounds. However, the existing reviews mainly discussed the research of hydrogel adhesives for skin wounds, and the focus is mostly on its types and adhesion mechanisms, but a review comprehensively discusses the design and application of hydrogel adhesives on generalized wounds for wound closure and wound healing and the unique needs of various wounds for hydrogel adhesives is still lacking. In this review, the types and adhesion mechanisms of hydrogel adhesives will be briefly described, then the research progress of hydrogel adhesives in wound treatment is reviewed in detail from two aspects: the comprehensive design principles and the unique requirements of different types of wounds. Overall, we expect that this review will provide guidance for the development of hydrogel adhesives as new avenues for generalized wound care and treatment.  相似文献   

8.
Tissue adhesives are an attractive class of biomaterials, which can serve as a treatment for meniscus tears. In this study, physicochemical and adhesive properties of novel biodegradable three‐armed‐ and hyperbranched block copolymeric adhesives are evaluated. Additionally, their degradation in vitro and in vivo, and the tissue reaction after subcutaneous injection in rats are assessed. The developed adhesives have sufficient adhesive strength to meniscus tissue after curing (66–88 kPa). Networks based on the three‐armed adhesive have tensile properties that are in the same range as human meniscus. After 26 weeks, networks based on the hyperbranched adhesive show a faster mass loss (25.4%) compared to networks prepared from the three‐armed ones (5.5%). Both adhesives induce an inflammatory reaction, however, no necrosis and only initial toxic effects on peripheral tissues are observed. The proposed materials are suitable candidates for the use as resorbable tissue adhesives for meniscus repair.  相似文献   

9.
Results of testing of two groups of film adhesives that differ in their chemical natures, service temperatures, and elastic-deformation characteristics, such as VK-3, VK-50, and VK-26M phenolic rubber adhesives and high-strength VK-51A epoxy adhesive, are reported. The locus of failure of adhesive joints after wedge tests in the initial state and after heat-moisture aging is studied using a scanning electron microscope. It is revealed that, as result of heat-moisture aging, the locus of failure of adhesive joints changes for VK-51A (with and without EP-0234 primer) and VK-3 adhesives, whereas it remains unchanged for VK-50 (with EP-0234 primer) and VK-26M adhesives.  相似文献   

10.
A variety of biomedical applications requires tailored membranes; fabrication through a mix‐and‐match approach is simple and desired. Polymers based on supramolecular bis‐urea (BU) moieties are capable of modular integration through directed non‐covalent stacking. Here, it is proposed that non‐cell adhesive properties can be introduced in polycaprolactone‐BU‐based membranes by the addition of poly(ethylene glycol) (PEG)‐BU during immersion precipitation membrane fabrication, while unmodified PEG is not retained in the membrane. PEG‐BU addition results in denser membranes with a similar pore size compared to pristine membranes, while PEG addition induces defect formation. Infrared spectroscopy and surface hydrophobicity measurements indicate that PEG‐BU is retained during membrane processing. Additionally, PEG‐BU incorporation successfully leads to poor cell adhesive surfaces. No evidence is observed to indicate PEG retention. The results obtained indicate that the BU system enables intimate mixing of BU‐modified polymers after processing. Collectively, the results provide the first steps toward BU‐based immersion precipitated supramolecular membranes for biomedical applications.  相似文献   

11.
The general properties of adhesives and compounds for electronic articles are described that were elaborated by the company: TK-1 adhesive with elevated thermal conductivity; TEK-type adhesives that demonstrate higher elasticity and adhesion ability; TK-8-type all-purpose adhesives; MS-type, single-packed, thermally stable glues for long storage; electrically conductive adhesives; TPK-1 and TPK-2 magnetic adhesives and TPK-3 nonmagnetic adhesive; and some compounds, e.g., epoxide molding compositions. The functionality of all adhesives and compounds presented were tested for weather factors, including elevated humidity, higher and lower temperatures, thermal cycles, effects of vibrations for both pilot samples, and final articles of electronic mechanisms.  相似文献   

12.
This study used controlled microwaves to elucidate the response of adhesive components to microwaves and examined the advantages of microwave radiation in curing epoxy adhesives. Curing of adhesives with microwaves proceeded very rapidly, even though each component of the adhesive was not efficiently heated by the microwaves. The reason the adhesive cured rapidly is that microwave heating was enhanced by the electrically charged (ionic) intermediates produced by the curing reaction. In contrast, the cured adhesive displayed lower microwave absorption and lower heating efficiency, suggesting that the cured adhesive stopped heating even if it continued to be exposed to microwaves. This is a definite advantage in the curing of adhesives with microwaves, as, for example, adhesives dropped onto polystyrene could be cured using microwave heating without degrading the polystyrene base substrate.  相似文献   

13.
Results of mechanical tests of bonded–riveted joints using two types of adhesives represented by epoxy adhesive and hot-melt adhesives derived from ethylene vinyl acetate are given. Removal time of bonded–riveted joints is evaluated and elastic characteristics of the employed adhesive materials are measured. It is shown that the use of hot-melt adhesives is more processable, because it provides the removal of riveted connections in short period without mechanical damages.  相似文献   

14.
The adhesive capacity of novel one-pack epoxy adhesives, which contain latent hardeners and are thermostable at 150°C, to carbon-filled and glass-reinforced plastics and aluminum alloys is studied. The heat resistance and the adhesive and cohesive characteristics of the adhesive composites developed are found to be comparable with the VK-20, VK-89, and VK-91 two-pack adhesives.  相似文献   

15.
Methods for developing adhesives and adhesive material used in the structures of almost all units of aviation machinery are described step by step. The properties of high-strength film-forming adhesives; adhesive prepregs; sandwich-type aluminum-polymer materials (SIALs); cold- and hot-setting adhesives intended for gluing metals, different nonmetallic materials, and combined joints; and self-adhesive film materials of ZPPK and FAS grades are given. It is also shown where and for which purposes these adhesives are applied.  相似文献   

16.
Requirements for current-conducting adhesives used to assemble electric and radio products are formulated. Current-conducting adhesives presently used in Russian and foreign practice are reviewed. The main characteristics of current-conducting, hot-cured TZK-14s adhesive developed at OAO Kompozit are given. Based on preliminary testing, TZK-14s adhesive has been proposed as a substitute for VK-20 adhesive (which contains silver powder), the components of which are no longer produced in Russia.  相似文献   

17.
Antifouling properties of materials play crucial roles in many important applications such as biomedical implants, marine antifouling coatings, biosensing, and membranes for separation. Poly(ethylene glycol) (or PEG) containing polymers and zwitterionic polymers have been shown to be excellent antifouling materials. It is believed that their outstanding antifouling activity comes from their strong surface hydration. On the other hand, it is difficult to develop underwater glues, although adhesives with strong adhesion in a dry environment are widely available. This is related to dehydration, which is important for adhesion for many cases while water is the enemy of adhesion. In this research, we applied sum frequency generation (SFG) vibrational spectroscopy to investigate buried interfaces between mussel adhesive plaques and a variety of materials including antifouling polymers and control samples, supplemented by studies on marine animal (mussel) behavior and adhesion measurements. It was found that PEG containing polymers and zwitterionic polymers have very strong surface hydration in an aqueous environment, which is the key for their excellent antifouling performance. Because of the strong surface hydration, mussels do not settle on these surfaces even after binding to the surfaces with rubber bands. For control samples, SFG results indicate that their surface hydration is much weaker, and therefore mussels can generate adhesives to displace water to cause dehydration at the interface. Because of the dehydration, mussels can foul on the surfaces of these control materials. Our experiments also showed that if mussels were forced to deposit adhesives onto the PEG containing polymers and zwitterionic polymers, interfacial dehydration did not occur. However, even with the strong interfacial hydration, strong adhesion between mussel adhesives and antifouling polymer surfaces was detected, showing that under certain circumstances, interfacial water could enhance the interfacial bio-adhesion.

Antifouling properties of materials play crucial roles in many important applications such as biomedical implants, marine antifouling coatings, biosensing, and membranes for separation.  相似文献   

18.
Analysis of properties of cold-setting epoxy adhesives and various types of film adhesives is carried out with reference to their applicability in Arctic conditions. Data on waterproofness, water absorption, and hygroscopic properties of the set adhesive films are determined. The application of adhesive joints at–60°C is considered.  相似文献   

19.
In nature, many organisms can effectively fix to contact substrates and move and prey in complex living environments, such as underwater, seawater, and tidal environments, owing to special secreted chemical components and/or special micro/nanostructures on the adhesive surface of these organisms. Inspired by the adhesive performance of organisms, extensive research related to adhesive components and adhesive surfaces has been conducted recently. To better understand the underlying adhesive mechanisms and facilitate further continuous inspiration, a brief overview of recent wet/underwater adhesive materials is provided herein. First, the adhesive processes and underlying mechanisms of commonly researched organisms, such as mussels, octopuses, clingfish, and tree frogs, are discussed, and the corresponding bioinspired artificial adhesives are presented. Then, the applications of these bioinspired adhesives, such as intelligent robots (signal monitoring and sensing devices), wearable devices (including wet climbing and electronic skin), biomedicines (including wound dressings, bone adhesion, and rapid hemostasis), are presented and summarized. Finally, we offer our perspective on the future challenges and development of bioinspired artificial adhesives.  相似文献   

20.
Artificial small‐caliber vascular grafts are still limited in clinical application because of thrombosis, restenosis, and occlusion. Herein, a small‐caliber vascular graft (diameter 2 mm) is fabricated from poly(ε‐caprolactone)‐b‐poly(isobutyl‐morpholine‐2,5‐dione) (PCL‐PIBMD) and silk fibroin (SF) by electrospinning technology and then biofunctionalized with low‐fouling poly(ethylene glycol) (PEG) and two cell‐adhesive peptide sequences (CREDVW and CAGW) with the purpose of enhancing antithrombogenic activity and endothelialization. The successful grafting of PEG and peptide sequences is confirmed by X‐ray photoelectron spectroscopy. The suitable surface wettability of the modified vascular graft is testified by water contact angle analysis. The surface hemocompatibility is verified by platelet adhesion assays and protein adsorption assays, and the results demonstrate that both platelet adhesion and protein adsorption on the biofunctionalized surface are significantly reduced. In vitro studies demonstrate that the biofunctionalized surface with suitable hydrophilicity and cell‐adhesive peptides can selectively promote the adhesion, spreading, and proliferation of human umbilical vein endothelial cells. More importantly, compared with control groups, this biofunctionalized small‐caliber vascular graft shows high long‐term patency and endothelialization after 10 weeks of implantation. The biofunctionalization with PEG and two cell‐adhesive peptide sequences is an effective method to improve the endothelialization and long‐term performance of synthetic vascular grafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号