首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以双酚芴为结构单元合成双酚型聚醚醚酮聚合物,聚醚醚酮经浓硫酸磺化在双酚芴结构单元中引入磺化基团制备出聚醚醚酮质子交换膜(SF-PEEK)。 用傅里叶变换红外光谱(FTIR)、核磁共振氢谱(1H NMR)、热重分析(TG)、原子力显微镜(AFM)和扫描电子显微镜(SEM)等方法对聚醚醚酮质子交换膜的结构进行表征。 结果表明,磺酸基团被成功地在聚醚醚酮侧基上,SF-PEEK膜具有明显的亲水疏水微相分离形貌,磺酸基团相互聚集成形成离子通道。 SF-PEEK膜离子交换容量(IEC)达到1.97 mmol/g时,其电导率达到4.15×10-2 S/cm,略低于Nafion117膜的5.67×10-2 S/cm,但其钒离子渗透率仅为Nafion117膜的20.1%,表现出极好的离子选择性。 在钒流电池测试中,SF-PEEK膜在不同电流密度下库伦效率均高于Nafion117膜,其中IEC为1.97 mmol/g的SF80-PEEK608(80为SF的物质的量分数,608为60 ℃反应8 h)库伦效率在电流密度为40 mA/cm2时达到最大值80.9%,高于Nafion117膜的78.8%。 在自放电测试中,以SF80-PEEK608膜组装的电池的自放电时间为90 h,高于Nafion117膜的57 h。  相似文献   

2.
以浓硫酸为溶剂和磺化剂制备磺化度(DS)为65%的磺化聚醚醚酮(SPEEK),根据SPEEK和氧化石墨烯(GO)不同质量比制备一系列共混膜(S/GO).对共混膜的含水量、离子交换容量、面电阻、质子电导率、钒离子渗透率、机械强度以及耐氧化性进行研究.采用扫描电子显微镜(SEM)观察S/GO共混膜的形态;通过热重分析(TG)表征共混膜的热稳定性.结果表明随着GO引入量的增加,共混膜的含水量增加,离子交换容量(IEC)降低,质子电导率减小,钒离子渗透率减小,机械性能增强.共混膜能量效率均高于Nafion115,其中S/GO-2(GO含量2 wt%)的电池效率最佳,能量效率达到80%,相比于Nafion115提高近9%.在运行100次循环以后S/GO共混膜电池效率稳定性良好.S/GO共混膜有望在全钒液流电池中得到应用.  相似文献   

3.
以含3,3'-二烯丙基双酚 A 结构单元的聚醚醚酮为基膜材料, 通过自由基加成反应在取代基上引入磺酸基团, 合成侧链型磺化聚醚醚酮(SPEEK)质子交换膜. 用傅里叶变换红外(FTIR)光谱、 核磁共振氢谱(1H NMR)、 热重分析(TG)和扫描电子显微镜(SEM)等方法对 SPEEK 的结构进行表征. 实验结果表明, 巯基丙磺酸被接枝在聚醚醚酮侧基上, SPEEK 膜具有明显的亲水疏水微相分离形貌, 磺酸基团相互聚集形成离子通道. SPEEK 膜离子交换容量为 2.12 mmol/g, 钒离子渗透率为 1.54×10-6 cm2/min, 低于Nafion117 膜的钒离子渗透率, 阻钒能力优于 Nafion117 膜. 以 SPEEK-4 膜组装电池的自放电时间约为130 h, 长于 Nafion117 膜的 66 h. 电池充放电循环 50 次, SPEEK-4 膜的库仑效率、 电压效率和能量效率没有明显降低, 显示出良好的稳定性.  相似文献   

4.
以合成的一系列不同磺化度的碘化聚芳醚腈酮(SPPENKs)为acidic聚合物,以聚芳醚酰亚胺(PEI)为basic聚合物,并将其溶解在N-甲基-2-吡咯烷酮(NMP)中配成质量分数为10%的成膜液,60℃下刮制成膜,制得acid-base型磺化聚芳醚腈酮质子导电了聚合物膜.用红外(FT-IR)谱图表征了acid-base型质子导电聚合物的结构,并测试了acid-base型质子导电聚合物膜的溶胀率、含水率、水解、氧化和热稳定性以及膜材料的离子交换容量IEC(IEC=meqSO3H/gdrymembrane)值等.测试结果初步表明新型质子导电聚合物膜具有良好的物化性能和较高的质子导电性,在80℃下acid-base型质子导电聚合物膜的水解断裂时间除SPPENK-40/PEI外,都超过2000h;SPPENK-60/PEI和SPPENK-80/PEI膜(IEC分别为1·08mmol/g、1·32mmol/g)与Nafion117相比,在具有较高质子交换能力的同时具有较低的溶胀率。  相似文献   

5.
以二氟二苯甲酮、双酚A和邻甲基氢醌为单体先经缩聚反应生成聚醚醚酮(PEEK),PEEK经修饰合成含有溴异丙基侧基的聚醚醚酮,以此为原子转移自由基聚合(ATRP)大分子引发剂,通过ATRP法聚合,在PEEK主链上接枝引入聚苯乙烯磺酸钠侧链,得到侧链型PEEK接枝聚合物(PEEK-g-StSO3Na)。 用傅里叶变换红外(FTIR) 光谱、核磁共振氢谱(1H NMR)、热重分析(TG)和扫描电子显微镜(SEM)等技术手段对PEEK-g-StSO3Na的结构进行表征。 结果表明,苯乙烯磺酸钠成功的被接枝到聚醚醚酮主链上,PEEK-g-StSO3Na膜具有明显的亲水疏水微相分离结构,磺酸基团相互聚集形成离子通道,离子交换容量为2.034 mmol/g的PEEK-g-StSO3Na膜的电导率为8.34×10-2 S/cm,膜的尺寸稳定性优于Nafion 117。  相似文献   

6.
以二氟二苯甲酮、双酚A和邻甲基氢醌单体缩聚合成聚醚醚酮(PEEK)作为基膜材料.PEEK经修饰改性合成带有异丙基溴端基PEEK,以此为原子转移自由基聚合(ATRP)大分子引发剂,通过ATRP法在PEEK主链上接枝引入聚甲基丙烯酸二甲基胺基乙酯(DMAEMA)侧链,得到梳状PEEK接枝聚合物(PEEK-gDMAEMA).用傅里叶变换红外(FTIR)光谱、核磁共振氢谱(1H-NMR)、热重分析(TG)和扫描电子显微镜(SEM)等方法对PEEK-g-DMAEMA的结构进行表征.实验结果表明,甲基丙烯酸二甲基胺基乙酯被成功地接枝在聚醚醚酮主链上,PEEK-g-DMAEMA膜具有明显的亲水疏水微相分离形貌,叔胺基团相互聚集成形成离子通道.接枝聚合反应10 h,PEEK-g-DMAEMA膜的离子交换容量为2.07 mmol·g-1,以此膜为电解槽隔膜,2 h的OH-离子透过率达0.15 mol·L-1,说明PEEK-g-DMAEMA膜具有良好的离子交换能力.  相似文献   

7.
DMFC用PES/SPEEK共混阻醇质子交换膜   总被引:1,自引:0,他引:1  
将磺化聚醚醚酮(SPEEK, 磺化度DS为68.3%)和聚醚砜(PES)两种聚合物共混制得PES/SPEEK共混膜. DSC研究表明两种聚合物之间具有较好的相容性, 因而共混膜均匀致密, 未发生大尺度相分离. PES的混入能有效降低膜的溶胀度及甲醇透过系数. 纯SPEEK 膜40 ℃时在1 mol•L−1甲醇水溶液中溶胀度达到160%, 45 ℃时就完全溶解, 而含30%(w)PES的共混膜在80 ℃时的溶胀度仅有15%. 室温下含20%−30%(w)PES的共混膜的甲醇透过系数为1×10−7 cm2•s−1左右, 比Nafion 115膜的透过系数小一个数量级. 尽管80 ℃下30%(w)PES/SPEEK共混膜的电导率与Nafion 115膜相当, 但由于共混膜的厚度比Nafion 115膜小1/3左右, 膜电阻较小, 因而其电池性能比Nafion 115膜的好.  相似文献   

8.
采用高温一步法合成了一系列不同磺化度的三元共聚磺化聚酰亚胺(SPI),通过控制磺化二胺与非磺化二胺的摩尔比来调节磺化度.选取碱性聚合物聚乙烯吡咯烷酮(PVP)与SPI按质量比1∶9进行共混,制成SPI/PVP酸碱复合膜.对复合膜的吸水率、离子交换容量、钒离子渗透率以及电池性能进行了测试.结果表明,随着磺化度的升高,复合膜的吸水率、离子交换容量、质子电导率升高以及钒离子渗透率升高.复合膜的隔膜选择性比Nafion117的选择性好,其中SPI/PVP-3的选择性是Nafion117的10倍.电池性能测试表明,随磺化度的升高,复合膜能量效率升高.其中SPI/PVP-3膜较Nafion117膜具有较高的库伦效率和能量效率,通过循环测试SPI/PVP-3膜性能稳定,充放电理想.  相似文献   

9.
以含有异丙基溴侧基的聚醚醚酮为原子转移自由基聚合(ATRP)大分子引发剂,通过ATRP法在聚醚醚酮主链上接枝引入聚苯乙烯磺酸钠侧链,得到侧链型磺化聚醚醚酮质子交换膜(SSPEEK).采用溶液共混法在SSPEEK膜中引入钠基蒙脱土(Na-MMT),制备SSPEEK/Na-MMT钒电池质子交换复合膜.热重分析表明,复合膜具有较好的耐热性;扫描电镜显示,Na-MMT均匀分散在SSPEEK中.复合膜的钒离子渗透率由SSPEEK膜的1.24×10-5cm2·min-1降为4.88×10-6cm2·min-1,低于Nafion117膜的钒离子渗透率,阻钒能力优于Nafion117膜.电流密度为30 m A·cm-2时,以复合膜组装的电池的放电时间为215 min,长于Nafion117膜的198 min.在高放电电流密度下SSPEEK/Na-MMT膜的库伦效率与Nafion117膜相当.  相似文献   

10.
本文报道了采用浓硫酸作为磺化剂,成功合成了不同磺化度下的聚醚醚酮(PEEK)膜,并深入研究了磺化条件包括磺化时间和磺化剂的用量对所获薄膜性能的影响,获得了在不同磺化度(DS)下SPPEK膜的离子交换容,含水率,机械性能,质子电导率等参数,特别测定了在全钒液流电池工作条件下钒离子(Ⅳ)渗透率,首次为该类液流储能电池使用价廉质优的质子交换膜提供了基础实验数据。室温条件下的实验结果如下:1)磺化12小时后,膜的磺化度46%,含水量为28%,钒离子(Ⅳ)选择性最佳(钒离子渗透率为1.2×10-7 cm2/min-1,是Nafion117 (2.9×10-6 cm2/min-1)的1/24),其质子电导率只有0.02 S/cm;2)磺化96小时其磺化度达79%的膜,质子电导率达0.16 S/cm,是Nafion117 (0.10S/cm) 的1.6倍, 但其机械性能最差;3)与Nafion117膜相比,磺化在36到48小时的SPPEK膜其机械力学性能好,薄膜的钒离子渗透率、离子交换容IEC、质子导电率和含水率高,且对钒离子的选择性佳,尤其价格仅为Nafion膜的1/13,是理想的Nafion膜的代替物,可望直接应用于全钒氧化还原液流(VRB)电池中。本文还讨论了磺化时间和不同磺化剂量对膜的性质的影响。  相似文献   

11.
通过在磺化聚醚醚酮(SPEEK,DS=61.68%)中分别混入酚酞型聚醚砜(PES-C)、磺化酚酞型聚醚砜(SPES-C,DS=53.7%)制备出SPEEK/PES-C、SPEEK/SPES-C共混质子交换膜.结果表明,共混的两种聚合物之间均具有较好的相容性.PES-C、SPES-C的混入能有效降低膜的溶胀及甲醇透过,且随着共混量的增加,这种作用越趋明显.纯SPEEK膜在75℃左右溶解,而SPEEK/PES-C(30wt%)、SPEEK/SPES-C(30wt%)共混膜在80℃时溶胀度仅为22.5%、26.32%.在室温至80℃范围内,纯SPEEK及共混膜的甲醇透过系数都在10-7cm2.s-1数量级上,远小于Nafion115膜.在饱和湿度下,温度大于90℃时,SPEEK/PES-C(20wt%)共混膜电导率超过Nafion115膜;温度大于110℃时,SPEEK/SPES-C(30wt%)共混膜电导率与Nafion115膜相当,达到0.11S.cm-1.高电导率,低透醇系数以及明显提高了的可使用温度表明该类共混膜有望在DMFC中使用.  相似文献   

12.
全钒氧化还原液流电池用Nafion/有机硅复合膜   总被引:1,自引:0,他引:1  
采用原位化学反应的方法制备了Nafion/有机硅复合膜, 并对所制备复合膜的离子交换容量(IEC)、电导率和水渗透率等进行了测试. 结果表明, 所制备复合膜具有优异的阻水性能. 以Nafion/有机硅复合膜作为离子交换膜的钒电池的库仑效率(CE)和能量效率(EE)都得到了大幅度提高. 此外, 以所制备复合膜为离子交换膜的VRB单电池充放电80次后性能几乎无衰减, 说明所制备Nafion/有机硅复合膜即使在强酸和强氧化性的钒电池体系中也可以稳定使用, 表明Nafion/有机硅复合膜是一种性能优异的适用于全钒氧化还原液流电池的新型质子交换膜.  相似文献   

13.
双极膜技术在电氧化制备3-甲基-2-吡啶甲酰胺中的应用   总被引:7,自引:1,他引:6  
分别以戊二醛和Fe3+改性壳聚糖和海藻酸钠并分别与柔性链聚乙烯醇(PVA)共混, 制备了Fe-SA-CS-GA/PVA聚合物双极膜. 测定膜的红外光谱, I-V工作曲线, Na+与Cl-透过双极膜的迁移数, 离子交换容量及阴阳两极室中OH-及H+的变化, 并以扫描电镜观察膜表面和界面层形态. IR与接触角分析结果表明, CS经GA/PVA改性后其亲水性能得到显著提高. 将SA-CS/PVA双极膜及Nafion膜应用于电氧化制备3-甲基-2-吡啶甲酰胺. 实验结果表明, 以SA-CS/PVA双极膜为隔膜合成3-甲基-2-吡啶甲酰胺的产率达到49.8%, 高于以Nafion膜为隔膜的产率.与传统的的方法相比, 该方法的反应条件温和且能有效利用能源.  相似文献   

14.
通过溶液流延法制备了磺化聚醚醚酮/锂皂石(SPEEK/Lap)复合膜, 对其物理化学性质、 机械性能、 化学稳定性及单电池性能进行了测试. 在SPEEK基质中引入的Lap有效改善了复合膜的质子传导率、 溶胀率和机械性能. 当Lap添加量(质量分数)从0.2%增到1.5%时, 复合膜的质子传导率随之增加(19.9~23.6 mS/cm). SPEEK/Lap-0.2复合膜的自放电时间为57.2 h, 是Nafion 117膜的2.4倍和纯SPEEK膜的1.5倍. 在80 mA/cm 2电流密度下, SPEEK/Lap-0.2复合膜的电压效率(VE, 86.5%)和能量效率(EE, 84.0%)明显高于Nafion 117膜(VE: 83.8%, EE: 80.7%)和纯SPEEK膜(VE: 81.4%, EE: 78.9%). 同时, SPEEK/Lap-0.2复合膜经100次充放电循环测试后具有良好的循环稳定性和结构稳定性.  相似文献   

15.
将γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(MPS)接枝到凹凸棒土(AT)表面,制得表面带有可聚合碳碳双键的改性粒子AT-MPS;以二硫代苯甲酸氰基异丙酯(CPDB)为链转移剂,采用可逆加成断裂链转移(RAFT)聚合技术,在AT表面进行甲基丙烯酸甲酯(MMA)接枝聚合.通过红外(FTIR)、热失重(TGA)等方法进行了表征,考察了引发剂以及RAFT链转移剂用量对聚合反应动力学和AT表面接枝聚合接枝率的影响.结果表明,PMMA通过RAFT聚合成功接枝在AT表面;基于RAFT过程的接枝聚合比传统自由基接枝聚合具有更长的反应时间和较高的接枝率.本体系相对适宜条件:温度为70℃,[MMA]/[CPDB]/[AIBN]为400/1/0.5.此条件下聚合反应具有很好的可控性,溶液中的聚合物分子量分布指数为1.2~1.3,AT表面PMMA接枝率为16.33%.引发剂和RAFT链转移剂用量过大均会造成接枝率降低.  相似文献   

16.
乔宗文  陈涛 《化学通报》2019,82(5):457-462
以双酚A型聚砜(PS)为基础,与自制的1,4-二氯甲氧基丁烷反应制备氯甲基化聚砜(CPS),接着与2-萘酚-6,8-二磺酸钾(NSK)进行亲核取代反应制备萘磺酸型侧链磺化聚砜(PS-NS)。采用溶液浇注法制备相应的质子交换膜(PEMs),结合前期研究的脂肪磺酸型侧链磺化聚砜(PS-ES)和苯磺酸型侧链磺化聚砜(PS-BS) PEMs,考察侧链结构对PEMs的吸水率、吸水溶胀率和尺寸稳定性的影响关系。结果表明,与主链型芳香聚合物PEMs相比,3种侧链型磺化聚砜PEMs由于亲水基团远离疏水主链,能够形成类似于Nafion膜的相分离结构,在高吸水率下保持更好的尺寸稳定性;在相同的离子交换膜容量(IEC)下,PS-ES、PS-BS和PS-NS膜随着侧链刚性苯环数目的增加,侧链的运动能力减弱,导致PEMs的尺寸稳定性增加,相应的质子传导率减小; PS-ES膜在25℃和85℃的质子传导率分别达到0. 072和0. 141 S/cm,PS-NS在25℃和85℃的尺寸溶胀性仅为21. 8%和51. 5%,性能与商业化的Nafion115膜十分接近。  相似文献   

17.
直接甲醇燃料电池中的膜性能比较   总被引:2,自引:0,他引:2  
邓会宁  李磊  许莉  王宇新 《物理化学学报》2004,20(11):1372-1375
制备了磺化聚醚醚酮(SPEEK)和磺化酚酞型聚醚砜(SPES-C)两种质子交换膜,考察了其质子导电和阻醇性能.实验发现,两种新型质子交换膜具有一定的化学稳定性和质子电导率,尤其在高温下两种新膜的质子电导率与Nafion膜接近.两种新膜的甲醇透过系数要比Nafion膜的低1~2个数量级.分别以两种新型膜和Nafion115膜为电解质制备了直接甲醇燃料电池膜电极,讨论了膜材料的性能对直接甲醇燃料电池性能的影响.结果表明,膜材料的阻醇性越好,电池的开路电压越高;膜的电导率越高,在较高电流密度区域内电池的性能越好.  相似文献   

18.
利用溶液浇铸法制备了一系列双磺化型磺化聚芳醚砜/磺化聚酰亚胺(SPAES/SPI)复合质子交换膜.扫描电子显微镜(SEM)结果显示复合膜不存在明显的相分离,表明二者具有很好的相容性.由于SPI的引入,复合膜在甲醇中稳定性较纯SPAES具有大幅的提高,比Nafion112低得多的甲醇吸收率表明了这些复合膜具有比后者更低的甲醇透过率.复合膜显示了与单组分膜相类似的高温分解稳定性,磺酸基团的分解温度达到了290℃以上.复合膜显示出远高于纯SPAES膜的尺寸稳定性能,在130℃高温中200h处理后,所有的复合膜均保持了高的机械性能,而此时纯SPAES膜已经溶解于水中.而且由于两种磺化聚合物间的复合,复合膜维持了较高的IEC水平,显示了较高的质子导电率,在80%相对湿度时的质子导电率与Nafion112相近,而在水中的质子导电率均高于Nafion112.  相似文献   

19.
将磺化二氯二苯砜(SDCDPS)、二氯二苯砜(DCDPS)与4,4′-联苯酚(BP)通过亲核缩聚反应得到一系列具有不同磺化度的磺化聚芳醚砜(SPAES)共聚物.通过FT-IR,TGA和DSC等分析方法对其结构及性能进行表征.并用透射电镜对其内部形态进行分析,建立了结构与性能之间的关系.研究了不同磺化度对膜性能的影响.结果表明,聚合物中磺酸基团的增多导致了磺化聚芳醚砜膜的吸水率、离子交换容量、质子传导率和甲醇渗透系数的增加.通过对膜的综合性能评价发现,磺化度为0.8的磺化聚芳醚砜膜在80℃时的质子传导率为0.116S/cm,100℃时的质子传导率为0.126S/cm,均高于Nafion117膜(0.114S/cm和0.117S/cm),且甲醇渗透系数为8.4×10-7cm2/s,远远低于Nafion117膜(2.1×10-6cm2/s).  相似文献   

20.
设计、合成了一种含氰基双氯单体,其结构特点是氰基分布在3个以间位醚键相连的苯环上。以此单体和2,5-二氯-3'-磺酸钠二苯甲酮为原料,利用Ni(0)催化偶联反应制备了微嵌段型质子交换膜材料(中等长度磺化聚苯-三氰基聚苯醚酮共聚物(m-SPP-co-PAEK 3CN x),x代表聚合物的离子交换容量)。结果表明,与相同离子交换容量的磺化聚合物相比,该类聚合物膜表现出较低的吸水、溶胀率和较低的甲醇渗透性能。以离子交换容量2.16为例,80℃下,m-SPP-co-PAEK 3CN 2.16的吸水率、溶胀率分别为29.7%、28.2%,而SPP-co-PAEK MO 2.33的吸水率、溶胀率分别为80.2%、37.2%。25℃下,二者的甲醇渗透系数分别为2.38和7.20。聚合物骨架结构中存在丰富的氰基基团,导致膜具有良好的尺寸稳定性和较低的甲醇渗透性能。基于这些优异的性能,新制备的膜材料在燃料电池领域显示了潜在的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号