首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel amphiphilic copolymer was synthesized from poly (ethylene glycol) methyl ether methacrylate (PEGMA950), methyl methacrylate (MMA) and acryloyl‐β‐cyclodextrin (acryloyl‐β‐CD) using the composites of (NH4)2S2O8/NaHSO3 as the oxidation–reduction initiators. The successful fabrication of poly(PEGMA‐co‐MMA‐co‐acryloyl‐β‐CD) copolymers was confirmed by Fourier transform infrared spectrometer (FTIR), 1H‐nuclear magnetic resonance (1H NMR) spectra. The amphiphilic copolymer could self‐assemble into nanoparticles (NPs), and their morphology and particle size distribution were characterized with transmission electron microscopy (TEM), atomic force microscope (AFM) and dynamic light scattering (DLS) methods. Ibuprofen (IBU) was encapsulated in the novel NPs, and the release profiles of IBU were investigated. FTIR and 1H NMR spectra illustrated that the poly(PEGMA‐co‐MMA‐co‐acryloyl‐β‐CD) copolymers were synthesized without any residual monomers and initiators. TEM and AFM photographs suggested that the obtained NPs were spherical, and the DLS results indicated that the diameter of blank NPs was 157.3 ± 32.7 nm. The IBU release profile showed that the IBU‐loaded NPs had certain pH responsibility. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Using atom transfer radical polymerization (ATRP) and macromolecular azo coupling reaction, both o‐nitrobenzyl (ONB) group and azobenzene group were efficiently incorporated into the center of the amphiphilic diblock copolymer chain. The prepared diblock copolymer was well characterized by UV–vis, 1H NMR, and GPC methods. Self‐assembly of the amphiphilic copolymer in selected solvents can result in uniform self‐assembly aggregates. In the presence of external stimuli [upconversion nanoparticles (UCNPs)/NIR light or enzyme], the amphiphilic diblock copolymer chain could be broken by the cleavage of ONB or azobenzene group, which would lead to the disruption of the self‐assembly aggregates. This photo‐ and enzyme‐triggered disruption process was proved by using transmission electron microscopy (TEM) and GPC method. Fluorescence emission spectra measurements indicated that the release of Nile red, a hydrophobic dye, encapsulated by the self‐assembly aggregates, could be successfully realized under the NIR light and enzyme stimuli. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2450–2457  相似文献   

3.
Novel environmentally friendly poly(hydroxybutyrate-co-hydroxyvalerate) and poly(ethylene glycol) (PHBV/PEG) copolymer networks were synthesized through free-radical solution polymerization with PHBV diacrylate (PHBVDA) and polyethylene glycol diacrylate (PEGDA) as macromers. The molecular structure of PHBV/PEG copolymer network was characterized by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (1H NMR). The morphology of the PHBV/PEG copolymer network was characterized by polarization optical microscopy. Thermal energy storage properties, thermal reliability and thermal stability were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis. The results indicated that the PHBV/PEG copolymer network hindered the growth of PEG crystalline segments or PHBV segments. PHBV/PEG copolymer network had a higher latent heat enthalpy, which didn’t reduce with the components of PHBV increased. Moreover, PHBV/PEG copolymer network still had good thermal stability even at 300 °C. These results suggested that such environmentally friendly copolymer network would have wide applications in phase change energy storage materials.  相似文献   

4.
A novel triblock copolymer PS–PHB–PS based on the microbial polyester Poly[(R)‐3‐hydroxybutyrate)] (PHB) and poly(styrene) (PS) was prepared to be used as compatibilizer for the corresponding PHB/PS blends. It was prepared in a three‐step procedure consisting of (i) transesterification reaction between ethylene glycol and a high‐molecular‐weight PHB, (ii) synthesis of bromo‐terminated PHB macroinitiator, and (iii) atom transfer radical polymerization polymerization of styrene initiated by the PHB‐based macroinitiator. Fourier transform infrared, gel permeation chromatography, 1H‐, and 13C‐NMR spectroscopies were used to determine the molecular structure and/or end‐group functionalities at each step of the procedure. Although thermogravimetric analysis showed that the block copolymer underwent a stepwise thermal degradation and had better thermal stability than their respective homopolymers, differential scanning calorimetry displayed that the PHB block in the copolymer could not crystallize, and thus generating a total amorphous structure. Atomic force microscopy images indicated that the block copolymer was phase segregated in a well‐defined morphological structure with nanodomain size of ~40 nm. Contact angle measurements proved that the wettability properties of the block copolymer were in between those of the PHB and PS homopolymers. Blends analyzed for their morphology and thermal properties showed good miscibility and had well‐defined morphological features. Polymer blends exhibited lower crystallinity and decreased stiffness which was proportional to the amount of compatibilizer content in the blends. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Porous a crylonitrile (AN)/methyl acrylate (MA) copolymer beads were synthesized by suspended emulsion polymerization and amidoximated for the purpose of Ag+ adsorption. Optimum amidoximation temperature and time were determined by following the adsorption capacity for Ag+. The results showed that amidoximated AN/MA (AO AN/MA) with the amidoximation temperature 70°C and amidoximation time 20 hr had a relatively higher adsorption capacity for Ag+. The effect of pH on adsorption for Ag+ was studied; the highest adsorption capacity presented at pH 5.0. Adsorption kinetics and isotherms of AO AN/MA copolymer beads for Ag+ were also investigated. The kinetics data indicated that the adsorption process was governed by the film diffusion and followed both pseudo‐first‐order and pseudo‐second‐order rate model. The isotherms indicated that adsorption capacities increased with equilibrium concentration and temperature. The Langmuir model and Sips model could describe the isothermal process. Thermodynamic analysis revealed that the adsorption behaviors of Ag+ ions on AO AN/MA could be considered as endothermic and physical sorption process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The effect of solution-state nanoscale structures on the assembly of micropatterns by solvent evaporation was explored with a novel amphiphilic diblock copolymer synthesized by reversible addition–fragmentation chain transfer polymerization. A copolymer of the structure poly(styrene-alt-maleic anhydride)75-b-isoprene84 was assembled into inverse micelles in toluene, and covalently stabilized in the core by reactive amidation of maleic anhydride residues with 2,2′-(ethylenedioxy)bis(ethylamine) to create core-crosslinked nanoparticles (CCNPs) or in the shell by the photoinitiated radical crosslinking reactions of isoprene units to create large crosslinked aggregates (LCAs) of heterogeneous sizes and shapes. Micropatterned films were prepared by the deposition of the diblock copolymer as a solution in acetone and the nanoscale structures (inverse micelle, crosslinked aggregate, and CCNP) as solutions in toluene onto trimethylysilyl chloride treated glass microscope slides under ambient conditions. An analysis by optical microscopy and tapping-mode atomic force microscopy (AFM) indicated that the nanoscale surface topology could be controlled by the pre-establishment of the block copolymer phase segregation into well-defined core–shell nanoassemblies in solution. The most interesting films resulted from the evaporative deposition of inverse micelle and CCNP solutions, which afforded uniform, straplike micropatterns of similar dimensions on the microscale and low surface roughness on the nanoscale (roughness = 4 ± 1 and 6± 1 nm by AFM). © 2006 Wiley Periodicals, Inc. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5218–5228, 2006  相似文献   

7.
We describe the synthesis of three novel thermoresponsive copolymers of acrylonitrile (AN) with N‐isopropylacrylamide (NIPAM) by a combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP). Linear copolymer polyacrylonitrile (PAN)‐b‐PNIPAM was directly prepared by RAFT polymerization. Comb‐like copolymers were synthesized by ATRP using brominated AN/2‐hydroxyethyl methacrylate copolymers as macroinitiators, which were prepared by RAFT polymerization. FT‐IR, NMR, and GPC were employed to characterize the synthesized copolymers. Results indicate that the polymerization processes can be well controlled and the resultant copolymers have well‐defined structures as well as narrow polydispersity. Then dense films were fabricated from these thermoresponsive copolymers and the surface wettability was evaluated by water contact angle measurements at different temperatures. It is found that the surface wettability is temperature‐dependant and both the transition temperature and decrement of water contact angle are affected by the copolymer shapes as well as the length of PNIPAM blocks. Considering the excellent fiber‐ and membrane‐forming properties of PAN‐based copolymers, the obtained thermoresponsive copolymers are latent materials for functional fibers and membranes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 92–102, 2009  相似文献   

8.
《先进技术聚合物》2018,29(7):2025-2035
A novel silver nanoparticle doped diblock copolymer was synthesized by a 3‐step process via bulk polymerization process under nitrogen atmosphere. The above prepared polymer is characterized by FTIR spectroscopy, fluorescence emission spectroscopy, circular dichroism (CD), HRTEM, and FESEM. The sulphamicacid end capped poly(ε‐caprolactone) (P1) system exhibited higher tensile strength than the sulphamicacid bridged diblock copolymer (P2) and nano Ag doped sulphamicacid bridged diblock copolymer (P3) systems. The splinting activity of the diblock copolymers was tested and confirmed the low temperature splinting activity of the diblock copolymer. The Ag nanoparticle catalyzed catalytic reduction of p‐nitrophenol (NiP) was tested, and the apparent rate constant (kapp) was determined as 7.36 × 10−3 sec−1. The thermal studies were carried out by DSC and TGA methods. The TGA study declared that the P1 system has higher degradation temperature than the P2 and P3 systems. The P1 system has higher melting temperature (Tm) (75.5°C) than the P2 and P3 systems. The CD study indicated that the conformation of sulphamicacid was not changed even after the formation of nano Ag doped sulphamicacid bridged diblock copolymer.  相似文献   

9.
A novel amphiphilic copolymer N-phthaloylchitosan graft poly(N-isopropylacrylamide) and poly(acrylic acid-co-tert-butyl acrylate) (PHCS-g-PNIPAAm&P(AA-co-tBA)) was synthesized. The graft copolymer could form micelles in aqueous medium, and the critical micelle concentration (CMC) of the copolymer was 7.5 × 10? 3mg/mL. The lower critical solution temperature (LCST) of the micelles was measured to be 30°C. Transmission electron microscopy (TEM) image showed that the micelles exhibited a regular spherical shape, and the mean diameter of the micelles was 94.1 ± 0.8 nm as determined by dynamic light scattering (DLS). The potential usefulness of the micelles as drug delivery systems was investigated using anti-inflammation drug prednisone acetate as the model. The drug loading capacity of the micelles was measured to be 22.86 wt%, and the DLS results showed that the mean diameter of the drug-loaded micelles was 133.3 ± 2.4 nm. In vitro drug release studies indicated that the micelles exhibited thermo and pH dual-responsive release profiles.  相似文献   

10.
Environmentally sensitive poly(N-isopropylacrylamide) (PNIPAAm) nanofibrous scaffolds loaded with a hydrophilic drug were fabricated via an electrospinning process. First, thermally crosslinkable poly(NIPAAm-co-N-methylolacrylamide) (PNN) was synthesized by redox polymerization below the phase transition temperature of PNIPAAm. The phase transition temperature of the PNN copolymer could be altered from 34 to 40 °C by changing the ratio of N-methylolacrylamide (NMA) to NIPAAm. Subsequently, PNN/chitosan nanofibers were electrospun using ethanol/acetic acid/water as a cosolvent. The PNN/chitosan nanofibers were sensitive to both pH and temperature. The fibrous structure of the soaked PNN/chitosan nanofibers was successfully preserved by the crosslinking of NMA. Furthermore, the chitosan-based nanoparticles (NPs) were introduced into the PNN nanofibers (PNN/NPs) to achieve prolonged drug release. The nanoparticles were observed in the PNN nanofibers by transmission electron microscopy. All of the scaffolds examined had high tensile strengths (1.45 MPa or above) and exhibited no significant cytotoxicity toward human fetal skin fibroblasts. Finally, doxycycline hyclate was used as a model drug. The results illustrated that PNN/NPs nanofibrous scaffolds exhibited continuous drug release behavior for up to 1 week, depending on the pH and temperature.  相似文献   

11.
A novel kind of pH‐sensitive brush copolymer [poly(2‐hydroxyethyl methacrylate)‐graft‐poly(ethylethylene phosphate)]‐block‐poly[2‐(dimethylamino)ethyl methacrylate] [(PHEMA‐g‐PEEP)‐b‐PDMAEMA] with biodegradable polyphosphoester as the side chains, and its self‐assembled aggregates were developed for nonviral gene delivery. The brush copolymers were synthesized via a combination of single‐electron transfer living radical polymerization and ring‐opening polymerization. The chemical structures of these brush copolymers were characterized by FTIR, 1H NMR, and 31P NMR measurements. The critical aggregation concentration values of (PHEMA‐g‐PEEP)‐b‐PDMAEMA in pH 7.4 buffer solution were determined by the fluorescence probe technique. The interaction of (PHEMA‐g‐PEEP)‐b‐PDMAEMA and DNA was studied by agarose gel retardation assay, and the formed complexes were further investigated by means of zeta potential, dynamic light scattering, and transmission electron microscopy measurements. In addition, the in vitro cytotoxicity and transfection tests indicated that these brush copolymers showed low toxicity and favorable transfection efficiency to HeLa cells. All these results demonstrated that these biocompatible brush copolymers may be a promising candidate as nonviral polymeric gene vector. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
A series of novel type bisphthalonitriles with different molecular weight main-chain polybenzoxazines as linkages have been successfully synthesized using 4, 4′-diaminodiphenyl methane, paraformaldehyde, bisphenol A and 4-nitrophthalonitrile as initial materials. The structures were characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR). The formation of benzoxazine and the existence of nitrile groups were confirmed by the absorbance at 950cm?1 of benzene attached with oxazine ring and 2231 cm?1 of nitrile groups. The characteristic resonance peaks observed at about 4.52 (C-CH2-N) and 5.28 ppm (N-CH2-O) also determined the structure of benzoxazine ring. The curing behaviors were monitored by differential scanning calorimetry (DSC) and FT-IR. Two-stage polymerization mechanisms were observed according to the ring-opening of benzoxazine and the polymerization of nitrile groups catalyzed by phenolic hydroxyl groups, which generated during the curing reaction of benzoxazine. The polymerization of these bisphthalonitriles exhibited self-promoted curing behaviors. The completion of polymerization was proved by the disappearance of the band located at 950 cm?1 in FT-IR. Thermogravimetric analysis (TGA) was used to investigate the thermal stability, and the results showed that the cured polymers achieved extremely high char yield from 61.1% up to 74.2% at 800°C under nitrogen and exhibited increasing decomposition temperature as the contents of phthalonitrile groups increased, which indicated that the polymerization of phthalonitriles could improve the thermal stability.  相似文献   

13.
Well‐defined β‐cyclodextrin (β‐CD)‐appended biocompatible comb‐copolymer ethyl cellulose‐graft‐poly (ε‐caprolactone) (EC‐g‐PCL) was synthesized via the combination of ring‐opening polymerization (ROP) and click chemistry. The resulting products were characterized by 1H NMR, FT‐IR spectroscopy, and GPC. The synthesized comb‐copolymer could assemble to micelles, with the surface covered by β‐CD. The inclusion with ferrocene derivation was investigated by cyclic voltammetric (CV) experiments, which indicated the potential application of the micelles as nano‐receptors for molecule recognization and controlled drug release. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
《Analytical letters》2012,45(6):982-998
Molecular surface-imprinted polymers nanoparticles encapsulating magnetite modified with oleic acid, for recognition of salicylic acid was prepared by three-step miniemulsion polymerization. The important factors including polymerization process, solvents, miniemulsifying approaches, and co-stabilizer have been investigated to obtain magnetic molecular imprinting polymers (MMIPs) nanoparticles (NPs) with high saturation magnetization (Ms), regular morphology, and good monodispersion. The results showed that the amount of magnetite encapsulated in MMIPs NPs was 43.4 wt% and Ms was 33.584 emu/g. Thus, MMIPs NPs could be separated easily within 2 minutes by an external magnetic field. The transmission electron microscope (TEM) showed MMIPs NPs were of regular sphere with core-shell structure, where magnetite NPs were uniformly encapsulated in homogeneous polymer shells. The average diameter of MMIPs NPs was 98 nm with RSD of 6.6%. Good recognition and high loading of target molecule were achieved by MMIPs NPs in batch rebinding tests.  相似文献   

15.
A series of novel nonmetallocene catalysts with phenoxy‐imine ligands was synthesized by the treatment of phthaldialdehyde, substituted phenol with TiCl4, ZrCl4, and YCl3 in THF. The structures and properties of the catalysts were characterized by 1H NMR and elemental analysis. These catalysts were used for copolymerization of ethylene with acrylonitrile after activated by methylaluminoxane (MAO). The effects of copolymerization temperature, Al/M (M = Ti, Zr, and Y) ratio in mole, concentrations of catalyst and comonomer on the polymerization behaviors were investigated in detail. These results revealed that these catalysts were favorable for copolymerization of ethylene with acrylonitrile. Cat. 3 was the most favorable one for the copolymerization of ethylene with acrylonitrile, and the catalytic activity was up to 2.19 × 104 g PE/mol.Ti.h under the conditions: polymerization temperature of 50 °C, Al/Ti molar ratio of 300, catalyst concentration of 1.0 × 10–4 mol/L, and toluene as solvent. The resultant polymer was characterized by FTIR, cross‐polarization magic angle spinning, 13C NMR, WAXD, GPC, and DSC. The results confirmed that the obtained copolymer featured high‐weight–average molecular weight, narrow molecular weight distribution about 1.61–1.95, and high‐acrylonitrile incorporation up to 2.29 mol %. Melting temperature of the copolymer depended on the content of acrylonitrile incorporation within the copolymer chain. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
To achieve stable polymer electrolyte membranes (PEMs) with efficient ionic nano-channels, novel fully aromatic AB or ABA copolymers composed of poly(fluorenyl ether sulfone biphenyl)s (PFESBs) and poly(arylene ether sulfone)s (PAESs) were synthesized via polymerization and post-sulfonation methods, and were explored as fuel cell membranes. The structural analysis of synthesized copolymers and the corresponding membranes were ascertained by gel permeation chromatography (GPC), Fourier transform infrared (FTIR), and 1H nuclear magnetic resonance (NMR) techniques. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. High hydrophilic and hydrophobic nano-phase separation and obvious ionic aggregate block morphology was observed in both triblock and diblock copolymers in atomic force microscopy (AFM) phase images, which may be highly related to their proton transport ability. A sulfonated AB diblock copolymer membrane with an ion-exchange capacity (IEC) of 2.06 meq g?1 has a maximum proton conductivity of 184 mS cm?1, which is higher than that of a perfluorosulfonic acid membrane under the same measurement conditions.  相似文献   

17.
Urethane–urea dimethacrylates were synthesized and used in the preparation of nanocomposites containing gold nanoparticles (Au NPs) in situ photogenerated during the UV‐curing process in the absence of reducing agent. A study of the photopolymerization kinetics showed that the photoreactivity of the monomers alone or in combination with a dual urethane benzophenone (BP) macromer is dependent on the nature of photoinitiator (Irgacure819, BP/amine) and the formulation composition. It was found that the addition of 1 wt % AuBr3 in monomers slightly improved the polymerization rate and the degree of conversion. The formation of Au NPs into the network was confirmed through UV–vis, XRD, EDX, SAXS, and TEM analyses, the last indicating the existence of NPs with size around 8.5 nm and spherical/triangle shapes. On addition of 10 wt % 2[N‐methacryloyloxyethyl‐(N'‐2‐thioethyl)] (urea) in formulation, the Au NPs (200 nm) became predominantly cubic/hexagonal in shape. The composite films emit fluorescence at 575 nm, and this property could be exploited in the field of fluorescent bio/sensors. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 728–738  相似文献   

18.
Poly(styrene) (PS), poly(2,3,4,5,6‐pentafluorostyrene) (5FPS) and their random copolymers were prepared by bulk radical polymerization. The spin‐cast polymer films of these polymers were analyzed using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The surface and bulk compositions of these copolymers were found to be same, implying that surface segregation did not occur. The detailed analysis of ToF‐SIMS spectra indicated that the ion fragmentation mechanism is similar for both PS and 5FPS. ToF‐SIMS quantitative analysis using absolute peak intensity showed that the SIMS intensities of positive styrene fragments, particularly C7H7+, in the copolymers are higher than the intensities expected from a linear combination of PS and 5FPS, while the SIMS intensities of positive pentafluorostyrene fragments are smaller than expected. These results indicated the presence of matrix effects in ion formation process. However, the quantitative approach using relative peak intensity showed that ion intensity ratios are linearly proportional to the copolymer mole ratio when the characteristic ions of PS and 5FPS are selected. This suggests that quantitative analysis is still possible in this copolymer system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The miktoarm star‐shaped poly(lactic acid) (PLA) copolymer, (PLLA)2‐core‐(PDLA)2, was synthesized via stepwise ring‐opening polymerization of lactide with dibromoneopentyl glycol as the starting material. 1H NMR and FTIR spectroscopy proved the feasibility of synthetic route and the successful preparation of star‐shaped PLA copolymers. The results of FTIR spectroscopy and XRD showed that the stereocomplex structure of the copolymer could be more perfect after solvent dissolution treatment. Effect of chain architectures on crystallization was investigated by studying the nonisothermal and isothermal crystallization of the miktoarm star‐shaped PLA copolymer and other stereocomplexes. Nonisothermal differential scanning calorimetry and polarizing optical microscopy tests indicated that (PLLA)2‐core‐(PDLA)2 exhibited the fastest formation of a stereocomplex in a dynamic test due to its special structure. In isothermal crystallization tests, the copolymer exhibited the fast crystal growth rate and the most perfect crystal morphology. The results reveal that the unique molecular structure has an important influence on the crystallization of the miktoarm star‐shaped PLA copolymer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 814–826  相似文献   

20.
A novel double brush‐shaped copolymer with amphiphilic polyacrylate‐b‐poly(ethylene glycol)‐b‐poly acrylate copolymer (PA‐b‐PEG‐b‐PA) as a backbone and thermosensitive poly(N‐isopropylacrylamide) (PNIPAM) long side chains at both ends of the PEG was synthesized via an atom transfer radical polymerization (ATRP) route, and the structure was confirmed by FTIR, 1H NMR, and SEC. The thermosensitive self‐assembly behavior was examined via UV‐vis, TEM, DLS, and surface tension measurements, etc. The self‐assembled micelles, with low critical solution temperatures (LCST) of 34–38 °C, form irregular fusiform and/or spherical morphologies with single, double, and petaling cores in aqueous solution at room temperature, while above the LCST the micelles took on more regular and smooth spherical shapes with diameter ranges from 45 to 100 nm. The micelle exhibits high stabilities even in simulated physiological media, with low critical micellization concentration (CMC) up to 5.50, 4.89, and 5.05 mg L?1 in aqueous solution, pH 1.4 and 7.4 PBS solutions, respectively. The TEM and DLS determination reveled that the copolymer micelle had broad size distribution below its LCST while it produces narrow and homogeneous size above the LCST. The cytotoxicity was investigated by MTT assays to elucidate the application potential of the as‐prepared block polymer brushes as drug controlled release vehicles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号