首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
We report uptake kinetics measurements of the heterogeneous reaction of gas phase NO2 with solid films of pyrene. By using a coated flow tube equipped with several near-ultraviolet (UV) emitting lamps (range 300-420 nm), we examined the effect of actinic radiation on the heterogeneous loss kinetics of nitrogen dioxide. With atmospherically relevant concentrations of NO2, (20-119 ppbv), the uptake ranged from below 10(-7) in the dark to 3.5 x 10(-6) under near-UV irradiation. Under illuminated conditions, the uptake coefficient decreased markedly with increasing gas-phase concentration, suggestive of a Langmuir-Hinshelwood-type surface reaction mechanism. The NO2 reactivity was not a function of deposited Pyrene mass or of the relative humidity (in the range 10-89%) and depended linearly on the intensity of illumination. Gas-phase product analysis indicated that approximately 50% of the NO2 loss could be accounted for by HONO and NO release. These experimental results are discussed along with a possible nitration mechanism.  相似文献   

2.
Little quantitative information exists regarding the products of the heterogeneous reaction of polycyclic aromatic hydrocarbons (PAHs) and ozone. We have, therefore, performed the first quantitative study investigating the kinetics and products of the heterogeneous gas-surface reaction of anthracene and ozone as a function of ozone concentration and relative humidity (RH). The reaction exhibited pseudo-first-order kinetics for anthracene loss under dry conditions (RH < 1%) and the pseudo-first-order rate coefficients displayed a Langmuir-Hinshelwood dependence on the gas-phase ozone concentration, which yielded the following fitting parameters: the equilibrium constant for ozone adsorption, K(O3) = (2.8 +/- 0.9) x 10(-15) cm3 and the maximum pseudo-first-order rate coefficient, k(I)max = (6.4 +/- 1.8) x 10(-3) s(-1). The kinetics were unchanged when experiments were performed at approximately 50% and 60% RH. In the product study, a nonlinear dependence, similar to a Langmuir adsorption plot, of the anthraquinone product yield as a function of ozone concentration was observed and resulted in the following fitting parameters: K(O3) = (3.4 +/- 1.5) x 10(-15) cm3 and the maximum anthraquinone yield, ANQmax % = 30 +/- 18%. Experiments performed under higher relative humidity conditions ( approximately 50% and 60% RH) revealed that the anthraquinone yield was unaffected by the presence of gas-phase water. It is noteworthy that both the anthracene loss kinetics and the anthraquinone yields have a similar dependence on the degree of ozone partitioning to the surface. This can be understood in terms of a mechanism whereby the rate-determining steps for anthracene loss and anthraquinone formation are both driven by the amounts of ozone adsorbed on the surface. Our results suggest that at atmospherically relevant ozone concentrations (100 ppb) the anthraquinone yield from the ozonolysis of anthracene under dry and high relative humidity conditions would be less than 1%.  相似文献   

3.
Heterogeneous reaction kinetics of gaseous nitric acid with deliquesced sodium chloride particles NaCl(aq) + HNO3(g) --> NaNO3(aq) + HCl(g) were investigated with a novel particle-on-substrate stagnation flow reactor (PS-SFR) approach under conditions, including particle size, relative humidity, and reaction time, directly relevant to the atmospheric chemistry of sea salt particles. Particles deposited onto an electron microscopy grid substrate were exposed to the reacting gas at atmospheric pressure and room temperature by impingement via a stagnation flow inside the reactor. The reactor design and choice of flow parameters were guided by computational fluid dynamics to ensure uniformity of the diffusion flux to all particles undergoing reaction. The reaction kinetics was followed by observing chloride depletion in the particles by computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The validity of the current approach was examined first by conducting experiments with median dry particle diameter D(p) = 0.82 microm, 80% relative humidity, particle loading densities 4 x 10(4) 相似文献   

4.
Recent field studies of collected aerosol particles, both marine and continental, show that the outermost layers contain long-chain (C >or= 18) organics. The presence of these long-chain organics could impede the transport of gases and other volatile species across the interface. This could effect the particle's composition, lifetime, and heterogeneous chemistry. In this study, the uptake rate of acetic acid vapor across a clean interface and through films of long-chain organics into an aqueous subphase solution containing an acid-base indicator (bromocresol green) was measured under ambient conditions using visible absorption spectroscopy. Acetic acid is a volatile organic compound (VOC) and is an atmospherically relevant organic acid. The uptake of acetic acid through single-component organic films of 1-octadecanol (C(18)H(38)O), 1-triacontanol (C(30)H(62)O), cis-9-octadecen-1-ol (C(18)H(36)O), and nonacosane (C(29)H(60)) in addition to two mixed films containing equimolar 1-triacontanol/nonacosane and equimolar 1-triacontanol/cis-9-octadecen-1-ol was determined. These species represent long-chain organic compounds that reside at the air-aqueous interface of atmospheric aerosols. The cis-9-octadecen-1-ol film had little effect on the net uptake rate of acetic acid vapor into solution; however, the uptake rate was reduced by almost one-half by an interfacial film of 1-triacontanol. The measured uptake rates were used to calculate the permeability of acetic acid through the various films which ranged from 1.5 x 10(-3) cm s(-1) for 1-triacontanol, the least permeable film, to 2.5 x 10(-2) cm s(-1) for cis-9-octadecen-1-ol, the most permeable film. Both mixed films had permeabilities that were between that of the single-component films comprising the mixture. This shows that the permeability of a mixed film may not be solely determined by the most permeable species in the mixture. The permeabilities of all the films studied here are discussed in relation to their molecular properties, pressure-area isotherms, and atmospheric implications.  相似文献   

5.
The heterogeneous chemistry and photochemistry of ozone on oxide components of mineral dust aerosol, including α-Fe(2)O(3), TiO(2), and α-Al(2)O(3), at different relative humidities have been investigated using an environmental aerosol chamber. The rate and extent of ozone decomposition on these oxide surfaces are found to be a function of the nature of the surface as well as the presence of light and relative humidity. Under dark and dry conditions, only α-Fe(2)O(3) exhibits catalytic decomposition toward ozone, whereas the reactivity of TiO(2) and α-Al(2)O(3) is rapidly quenched upon ozone exposure. However, upon irradiation, TiO(2) is active toward O(3) decomposition and α-Al(2)O(3) remains inactive. In the presence of relative humidity, ozone decay on α-Fe(2)O(3) subject to irradiation or under dark conditions is found to decrease. In contrast, ozone decomposition is enhanced for irradiated TiO(2) as relative humidity initially increases but then begins to decrease at higher relative humidity levels. A kinetic model was used to obtain heterogeneous reaction rates for different homogeneous and heterogeneous reaction pathways taking place in the environmental aerosol chamber. The atmospheric implications of these results are discussed.  相似文献   

6.
Analytic formula for the clear-sky UV index   总被引:1,自引:0,他引:1  
An approximate formula for the UV Index (UVI) under cloud-free, unpolluted, low surface albedo conditions is: UVI approximately 12.5mu(o)(2.42)(Omega/300)(-1.23) where mu(o) is the cosine of the solar zenith angle and Omega is the total vertical ozone column (in Dobson Units, DU). The dependence on mu(o) and Omega is based on a simple physical model of biologically weighted atmospheric transmission in the UV-B and UV-A spectral bands, with coefficients tuned to a detailed radiative transfer model, and is accurate to 10% or better over 0-60 degrees and 200-400 DU. Other factors (clouds, haze, ground, etc.) mostly conserve this dependence and scale simply.  相似文献   

7.
A new UV filter, the 1-(4-tert-butylphenyl)-2-decanyl-3-(4'-methoxyphenyl)-propane-1,3-dione, called C10-DBM, was prepared by grafting a 10-carbon aliphatic chain to the alpha-carbonyl position of 4-tert-butyl-4'-methoxydibenzoylmethane (BM-DBM), a well-known and often used UV filter. The UV-A absorption efficiency of organic solutions containing the new filter was tested and compared with identical solutions containing BM-DBM with or without irradiation (xenon lamp). The originality of this new filter is that its UV-A absorbance appeared during irradiation of the molecule. Although the molar absorption coefficient of C10-DBM in the UV-A domain was lower than that of BM-DBM, the solutions absorption exhibited a much more photostable behavior under irradiation. In this study, we first demonstrated that C10-DBM was a precursor of BM-DBM (enol isomer) by means of high-performance liquid chromatography followed by mass spectrometry. Indeed, we showed that the UV-A absorption of C10-DBM solutions appearing during the irradiation of the molecule was due to a Norrish-II reaction (beta-cleavage), which induced the release of the BM-DBM enol form and 1-decene. Then, we established a kinetic model for the photochemistry of C10-DBM and fitted the variation of UV absorption spectra to confirm the proposed mechanism.  相似文献   

8.
Electrical conductivity of titania nanosheets was investigated for a single-layered Langmuir-Blodgett (LB) film deposited onto a comb-type electrode (5 or 10 microm (electrode spacing) x 8 mm (electrode width)). The photoresponsive electrical properties of the film were investigated by irradiating with a Xe lamp under various atmospheric conditions. The atmosphere was controlled by introducing either oxygen or nitrogen gases containing different amounts of water vapor. As a result, the LB film behaved as an insulator with little photoresponse under dry atmospheric conditions. It became conductive on illuminating with a Xe lamp under a wet oxygen atmosphere. Conductivity increased with the increase of irradiation time (0-30 min) to attain a stationary value in 1 h. The highest conductive state thus attained lasted for several hours in the dark. The impedance of the film was measured over the frequency range of 1 MHz to 50 Hz by varying the relative humidity of an atmosphere from 0 to 100%. The results were analyzed by assuming an equivalent circuit consisting of one resistance (R) with constant Warburg component (W) and one capacitance (C) in parallel. The R component depended remarkably on the relative humidity, while the C component stayed nearly at the constant value. The dependence of R on water vapor (PH2O) was expressed by R = A[PH2O]n with A = constant and n = -2.9. The results were rationalized in terms of the surface modification of titania nanosheets to hydrophilic nature under the illumination of UV light.  相似文献   

9.
Penetration of ultraviolet radiation in the marine environment. A review   总被引:1,自引:0,他引:1  
UV radiation (UVR) is a significant ecological factor in the marine environment that can have important effects on planktonic organisms and dissolved organic matter (DOM). The penetration of UVR into the water column is likely to change in the near future due to interactions between global warming and ozone depletion. In this study we report underwater instruments employed for the measurement of UVR and we review data dealing with the depth of UVR penetration in different oceanic areas including the open ocean, Antarctic waters and coastal waters. We provide the 10% irradiance depth (Z10%) for UV-A and UV-B as well as for DNA damage effective dose (DNA), which we calculated from the values of diffuse attenuation coefficients or vertical profiles reported in the literature. We observe a clear distinction between open ocean (high Z10%, no variation in the ratio UV-B/UV-A), Antarctic waters (increase in the ratio UV-B/UV-A during ozone hole conditions) and coastal waters (low Z10%, no variation in the ratio UV-B/UV-A). These variations in the penetration of UVR could lead to differences in the relative importance of photobiological/photochemical processes. We also compare in this study the penetration of UV-B (unweighted and weighted by the Setlow action spectrum) and DNA damage effective dose.  相似文献   

10.
The heterogeneous interaction of H(2)O(2) with TiO(2) surface was investigated under dark conditions and in the presence of UV light using a low pressure flow tube reactor coupled with a quadrupole mass spectrometer. The uptake coefficients were measured as a function of the initial concentration of gaseous H(2)O(2) ([H(2)O(2)](0) = (0.17-120) × 10(12) molecules cm(-3)), irradiance intensity (J(NO(2)) = 0.002-0.012 s(-1)), relative humidity (RH = 0.003-82%), and temperature (T = 275-320 K). Under dark conditions, a deactivation of TiO(2) surface upon exposure to H(2)O(2) was observed, and only initial uptake coefficient of H(2)O(2) was measured, given by the following expression: γ(0)(dark) = 4.1 × 10(-3)/(1 + RH(0.65)) (calculated using BET surface area, estimated conservative uncertainty of 30%) at T = 300 K. The steady-state uptake coefficient measured on UV irradiated TiO(2) surface, γ(ss)(UV), was found to be independent of RH and showed a strong inverse dependence on [H(2)O(2)] and linear dependence on photon flux. In addition, slight negative temperature dependence, γ(ss)(UV) = 7.2 × 10(-4) exp[(460 ± 80)/T], was observed in the temperature range (275-320) K (with [H(2)O(2)] ≈ 5 × 10(11) molecules cm(-3) and J(NO(2)) = 0.012 s(-1)). Experiments with NO addition into the reactive system provided indirect evidence for HO(2) radical formation upon H(2)O(2) uptake, and the possible reaction mechanism is proposed. Finally, the atmospheric lifetime of H(2)O(2) with respect to the heterogeneous loss on mineral dust was estimated (using the uptake data for TiO(2)) to be in the range of hours during daytime, i.e., comparable to H(2)O(2) photolysis lifetime (~1 day), which is the major removal process of hydrogen peroxide in the atmosphere. These data indicate a strong potential impact of H(2)O(2) uptake on mineral aerosol on the HO(x) chemistry in the troposphere.  相似文献   

11.
The uptake of SO2 on HOBr-treated ice surfaces has been studied using a flow reactor coupled with a differentially pumped quadrupole mass spectrometer at 190-240 K. The initial uptake coefficient was determined as a function of HOBr surface coverage, theta(HOBr), on the ice. The uptake coefficients increase as the HOBr coverage increases. The uptake coefficient can be expressed as gamma(t) = k(h)theta(HOBr), where k(h) = 1.5 x 10(-19) molecules(-1) cm(-2) at 191 K and k(h) = 6.4 x 10(-21) molecules(-1) cm(-2) at 210 K and theta(HOBr) is in the range of 8 x 10(13) to 1.2 x 10(15) molecules cm(-2). The effects of temperature and film thickness on the uptake coefficients of SO2 by the HOBr-treated ice films were also studied. The activation energy E(a) of SO(2) on HOBr-ice surfaces is approximately -81 +/- 8 kJ/mol in the 190-215 K range. Kinetic results were interpreted in terms of the Eley-Rideal mechanism. This study suggests that the uptake of SO2 on ice/snow surfaces is enhanced by the presence of HOBr near the ice surface. The implication for atmospheric chemistry is that HOBr-ice surfaces may not provide a significant pathway to oxide S(IV) in the boundary layer due to both lower uptake coefficient and smaller HOBr surface coverage at T > 220 K.  相似文献   

12.
Fluocinolone 16,17-acetonide is a corticosteroid used topically to treat various inflammatory skin diseases. Its photoreactivity was studied under UV-A and UV-B light in aqueous buffer in the presence of oxygen. This drug is photolabile under UV-B light and, to a lesser extent, under UV-A light, which is absorbed far less. In phosphate buffer, approximately 80% of fluocinolone acetonide decomposes after 5 J/cm2 of UV-B irradiation, whereas under 30 J/cm2 of UV-A light approximately only 20% decomposes. Both the drug and its photoproducts have been evaluated through a battery of in vitro studies and found to cause photohemolysis and induce photodamage to proteins (erythrocyte ghosts, bovine serum albumin) and linoleic acid. In addition, one of the photoproducts (the 17-hydroperoxy derivative) is highly toxic in the dark. Therefore, both loss of therapeutic activity and light-induced adverse effects may be expected when patients expose themselves to sunlight after drug administration. A major mechanism for phototoxicity involves radicals forming from drug breakdown, at least under UV-B, although reactive oxygen species may play a role, particularly under UV-A.  相似文献   

13.
We have undertaken a kinetic study of heterogeneous ozone decomposition on alpha-Fe2O3 (hematite) and alpha-Al2O3 (corundum) aerosols under ambient conditions of temperature, pressure, and relative humidity in order to better understand the role of mineral dust aerosol in ozone loss mechanisms in the atmosphere. The kinetic measurements are made in an environmental aerosol reaction chamber by use of infrared and ultraviolet spectroscopic probes. The apparent heterogeneous uptake coefficient, gamma, for ozone reaction with alpha-Fe2O3 and alpha-Al2O3 surfaces is determined as a function of relative humidity (RH). The uptake of ozone by the iron oxide surface is approximately an order of magnitude larger than that by the aluminum oxide sample, under dry conditions. At the pressures used, alpha-Fe2O3 shows clear evidence for catalytic decomposition of ozone while alpha-Al2O3 appears to saturate at a finite ozone coverage. The measured uptake for both minerals decreases markedly as the RH is increased. Comparison with other literature reports and the atmospheric implications of these results are discussed.  相似文献   

14.
15.
The reactive uptake coefficients (γ) of O(3), NO(2), N(2)O(5), and NO(3) by levoglucosan, abietic acid, nitroguaiacol, and an atmospherically relevant mixture of those species serving as surrogates for biomass burning aerosol have been determined employing a chemical ionization mass spectrometer coupled to a rotating-wall flow-tube reactor. γ of O(3), NO(2), N(2)O(5), and NO(3) in the presence of O(2) are in the range of 1-8 × 10(-5), <10(-6)-5 × 10(-5), 4-6 × 10(-5), and 1-26 × 10(-3), respectively, for the investigated organic substrates. Within experimental uncertainties the uptake of NO(3) was not sensitive to relative humidity levels of 30 and 60%. NO(3) uptake experiments involving substrates of levoglucosan, abietic acid, and the mixture exhibit an initial strong uptake of NO(3) followed by NO(3) gas-phase recovery as a function of NO(3) exposure. In contrast, the uptake of NO(3) by nitroguaiacol continuously proceeds at the same efficiency for investigated NO(3) exposures. The derived oxidative power, i.e. the product of γ and atmospheric oxidant concentration, for applied oxidants is similar or significantly larger in magnitude than for OH, emphasizing the potential importance of these oxidants for particle oxidation. Estimated atmospheric lifetimes for the topmost organic layer with respect to O(3), NO(2), N(2)O(5), and NO(3) oxidation for typical polluted conditions range between 1-112 min, indicating the potential for significant chemical transformation during atmospheric transport. The contact angles determined prior to, and after heterogeneous oxidation by NO(3), representative of 50 ppt for 1 day, do not decrease and thus do not indicate a significant increase in hygroscopicity with potential impacts on water uptake and cloud formation processes.  相似文献   

16.
Fine particles of cholesterol were reacted with ozone under pseudo-first-order conditions in an aerosol bag reactor. Gas-phase ozone was monitored using an ozone meter. Particle size distribution functions were determined using a scanning mobility particle sizer, which selected particle sizes for introduction into a photoionization aerosol mass spectrometer (PIAMS). PIAMS was used to determine the concentration of cholesterol in the aerosol as a function of reaction time. Dilution corrected rate coefficients were used to calculate the reactive uptake coefficient for ozone onto cholesterol particles as (2.8 +/- 0.4) x 10(-6). Uptake was found to be independent of particle diameter for the sizes studied (100 and 200 nm), suggesting that the uptake is surface mediated. The reaction products were also collected on filters and analyzed by electrospray ionization (ESI) mass spectrometry with both direct infusion and liquid chromatography sample introduction. The main primary reaction products contained one, two, or three oxygens added to the cholesterol moiety. Secondary oligomeric products were also observed, consisting of covalently bound dimers and trimers. Tandem mass spectrometry was used to confirm the expected structures of these compounds. The dimers appear to be acyl hydroperoxides, consistent with a previously reported mechanism for the reaction in a nonparticipating solvent. Finally, the magnitude of the uptake coefficient confirms that cholesterol is suitable as a local source tracer for source apportionment of ambient organic aerosol.  相似文献   

17.
Under ultrasonic irradiation, organic fluorescence nanoparticles have been prepared by a reprecipitation method. Compared with single organic fluorophores, these nanoparticles are brighter, more stable against photobleaching and more water-soluble. They also have high room-temperature fluorescence quantum yields (approximately 20%) and a long fluorescence lifetime (approximately 0.2 micros). Based on the fluorescence quenching of nanoparticles by chromium(VI), a method for the selective determination of chromium(VI) without the separation of chromium(III) in water was developed. Under the optimal conditions, the linear range of the calibration curve was 7.0 x 10(-6) - 1.0 x 10(-4) mol L(-1). The detection limit was 2.8 x 10(-6) mol L(-1). The method is characterized by a short reaction time, stable fluorescence signals, simplicity and high selectivity. The present assay has been applied to the selective quantification of Cr(VI) in wastewater with satisfactory results.  相似文献   

18.
The uptake of formic (C1), propanoic (C3), butanoic (C4), and pentanoic (C5) acids onto ammonium nitrate (AN) has been investigated as a function of temperature and relative humidity using a Knudsen cell flow reactor coupled with FTIR-reflection absorption spectroscopy (FTIR-RAS). The uptake of acetone and methanol onto AN was also briefly studied. Initial uptake coefficients (gamma) were determined over the temperature range 200-240 K. Formic, propanoic, and butanoic acids exhibited efficient but temperature-dependent uptake on AN, with larger uptake coefficients observed at lower temperatures. Pentanoic acid was not taken up by AN under any of the conditions studied. Uptake of acetone and methanol onto AN was observed, but in insignificant amounts under atmospherically relevant conditions. Infrared spectra revealed that propanoic and butanoic acids ionized on the surface, despite the fact that the AN films were effloresced. Formic acid reacted with the AN film to produce ammonium formate and ionized nitric acid. Adding small amounts of water vapor (4% RH) to the chamber resulted in dramatically increased gamma values for all of the acids. Furthermore, the IR spectra showed the formation of a liquid layer when propanoic and butanoic acids adsorbed on the surface at RH = 20% and greater. Liquid water features were not observed at a similar relative humidity in the absence of the acids. These results show that small organic acids can be efficiently scavenged by AN and lead to enhanced water uptake under upper tropospheric conditions.  相似文献   

19.
The uptake of 2-nitrophenol, 2-methylphenol, 3-methylphenol, and 4-methylphenol on aqueous surfaces was investigated between 278 and 303 K, using the wetted-wall flow tube technique coupled with UV absorption spectroscopic detection. The uptake coefficients gamma were found to be independent of the aqueous phase composition and of the gas-liquid contact times. In addition, the uptake coefficients and the derived mass accommodation coefficients alpha show a negative temperature dependence in the temperature range studied. The mass accommodation coefficients decrease from 5.2 x 10(-3) to 8.3 x 10(-4), from 5.0 x 10(-3) to 3.1 x 10(-4), from 6.7 x 10(-3) to 7.3 x 10(-4), and from 1.2 x 10(-2) to 5.9 x 10(-4) for 2-nitrophenol, 2-methylphenol, 3-methylphenol, and 4-methylphenol, respectively. These results are used to discuss the incorporation of these species into the liquid using the nucleation theory. These data combined with the Henry's law constants were used to estimate the partitioning of the phenolic compounds between gaseous and aqueous phases and the corresponding atmospheric lifetimes under clear sky (tau(gas)) and cloudy conditions (tau(multiphase)) have then been derived.  相似文献   

20.
The uptake of ClO radicals on KBr, NaCl, and NaBr dry solid films was studied at 1 Torr pressure of helium over the temperature range 290-350 K using a flow tube technique with a modulated molecular beam mass spectrometer as the detection method. A Pyrex tube with the deposited salt sample was introduced into the flow reactor along its axis. The ClO uptake coefficient on the KBr surface did not depend on temperature within the experimental accuracy of ~20%. Chlorine oxide radicals were prepared using the reaction of Cl with ozone. It was found out that the ClO uptake coefficient strongly depended on ozone concentration. The uptake coefficients at T = 293 K and [O(3)] = 4.6 × 10(13) molecules cm(-3) were found to be (9.6 ± 5.7) × 10(-4), (3.7 ± 1.5) × 10(-4), and (12.3 ± 3.6) × 10(-4) for KBr, NaCl, and NaBr, respectively. Bromine-containing species were not observed during the interaction of ClO radicals with KBr film. The results obtained indicate that the ClO loss through heterogeneous interaction with salt surface is not sufficiently rapid to compete with gas-phase self-reaction in the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号