首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Transition Metal Complexes [Et2P(S)NR]M/n, Chelates containing 4-membered Rings and Phosphinothioic-organylamidato Ligands Phosphinothioic-organylamidato complexes [Et2P(S)NR]M/n (R = Me, Et, tBu, cHex, Ph; M = TiIII, VIII, CrIII, CoII, ZnII) are obtained by reaction of metal halides with [Et2P(S)NR]Li or from ZnEt2 and Et2P(S)NHR. In contrast to the analogous phosphinothioic complexes [R′2P(S)X]M/n (X = O, S, Se) they are extremely hydrolyzable. The ligand field parameters Δ and β of Et2P(S)NR? are found to be similar to those of R′2P(S)S? indicating a low ligand field strength and a strong nephelauxetic effect. In contrast to [R′2P(S)O]2M (M = Co, Zn), which are highly polymerised, there is only a weak tendency of the corresponding tetrahedral phosphinothioicorganylamidato complexes to form ligand bridges.  相似文献   

2.
Binuclear Schiff base complexes derived from glycine (Gly) and 3-acetylpyridine (3-APy) in the presence of M(OAc)2 [M = CoII, NiII, CuII, ZnII and CdII] have been synthesized. The role of pH in promoting the condensation of glycine and 3-acetylpyridine, as well as the substitution of acetates by hydroxide ion, has been discussed. Also, the reaction of glycine with 3-acetylpyridine in the presence of MCl2 [M = CoII and NiII] and MCl3 [M = FeIII and CrIII] yields mono- and/or binuclear complexes containing both of glycine and 3-acetylpyridine without condensation. Both types of complex were isolated and characterized by chemical analysis, conductance, spectral (u.v.–vis., i.r., and 1H-n.m.r.), magnetic and thermal measurements.  相似文献   

3.
Metal Complexes of Biologically Important Ligands. CLXVI Metal Complexes with Ferrocenylmethylcysteinate and 1,1′‐Ferrocenylbis‐(methylcysteinate) as Ligands A series of complexes of transition metal ions ( Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ ) and of lanthanide ions ( La3+, Nd3+, Gd3+, Dy3+, Lu3+ ) with the anions of ferrocenylmethyl‐L‐cysteine [(C5H5)Fe(C5H4CH(R)SCH2CH(NH3+)CO2?] (L1) and with the dianions of 1,1′‐ferrocenylbis(methyl‐L‐cysteine) [Fe(C5H4CH(R)SCH2CH(NH3+) CO2?)2] (R = H, Me, Ph) (L2) as N,O,S‐donors were prepared. With the monocysteine ferrocene derivative L1 as ligands complexes [MIIL12] or [CrIIIL12]Cl type complexes are formed whereas the bis(cysteine) ligand L2 yields insoluble complexes of type [ML2]n, presumably as coordination polymers. The magnetic moments of [MnIIL2]n, [PrIIIL2]n(OH)n and [DyIIIL2]n(OH)n exhibit “normal” paramagnetism.  相似文献   

4.
Reactions of hydroxyethyl cellulose (HEC) with Cr III, NiII, CoII, or CuII chlorides in aqueous medium yielded complexes with formulae [M(HEC)Cl m .n H 2O], wherem =1 or 2 and n=2 or 3. HEC acted as a uninegatively charged bidentate ligand in the case of CrIII and NiII, and as a neutral ligand in the case of CoII and CuII complexes. The spectra showed that the binding sites in CrIII and NiII complexes were the ether oxygen between two ethoxyl groups and the oxygen of the hydroxyl group; while in the CoII and CuII complexes the binding sites were the oxygen of ethoxyl groups and the primary alcoholic O atom of glucopyranose rings. These complexes would most likely exhibit octahedral geometry with CrIII, NiII, and CoII, but square planar configuration in the case of the CuII complex. The ligand parameters of the CrIII, NiII, and CoII metal chelates were calculated in different solvents and at different temperatures. The thermal stability of the above complexes was investigated and the overall thermodynamics functions G0, H0, and S0, associated with complex formation, were estimated.  相似文献   

5.
The synthesis of three novel pyrazole-containing complexing acids, N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-1-yl]-4-methoxypyridine}tetrakis(acetic acid)( 1 ), N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-1-yl]pyrazine}-tetrakis(acetic acid) ( 2 ), and N,N,N′,N′-{6, 6′-bis[3-(aminomethyl)pyrazol-1-yl]-2, 2′-bipyridine}tetrakis(acetic acid) ( 3 ) is described. Ligands 1–3 formed stable complexes with EuIII, TbIII, SmIII, and DyIII in H2O whose relative luminescence yields, triplet-state energies, and emission decay lifetimes were measured. The number of H2O molecules in the first coordination sphere of the lanthanide ion were also determined. Comparison of data from the EuIII and TbIII complexes of 1–3 and those of the parent trisheterocycle N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-l-yl]pyridine}tetrakis(acetic acid) showed that the modification of the pyridine ring for pyrazine or 2, 2′-bipyridine strongly modify the luminescence properties of the complexes. MeO Substitution at C(4) of 1 maintain the excellent properties described for the parent compound and give an additional functional group that will serve for attaching the label to biomolecules in bioaffinity applications.  相似文献   

6.
Summary The synthesis and characterization of CrII, MnII, FeII, CoII, NiII, PdII, CuII, ZnII, CdII and UO 2 2+ complexes of 1-meotinoyl-4-phenyl-3-thiosemicarbazide (H2NTS) are reported. I.r. spectral data show that the ligand behaves in a bidentate and/or tetradentate manner. An octahedral structure is proposed for the CrII, FeII and NiII complexes; a tetrahedral structure for the MnII, CoII and Cu(NTS)·2H2O complexes; and a square planar structure for the PdII and Cu(HNTS)Cl·H2O complexes. The i.r. data suggest that the FeII complex contains a hydroxo bridge.  相似文献   

7.
The chromium(III) complex [CrIII(ddpd)2]3+ (molecular ruby; ddpd=N,N′-dimethyl-N,N′-dipyridine-2-yl-pyridine-2,6-diamine) is reduced to the genuine chromium(II) complex [CrII(ddpd)2]2+ with d4 electron configuration. This reduced molecular ruby represents one of the very few chromium(II) complexes showing spin crossover (SCO). The reversible SCO is gradual with T1/2 around room temperature. The low-spin and high-spin chromium(II) isomers exhibit distinct spectroscopic and structural properties (UV/Vis/NIR, IR, EPR spectroscopies, single-crystal XRD). Excitation of [CrII(ddpd)2]2+ with UV light at 20 and 290 K generates electronically excited states with microsecond lifetimes. This initial study on the unique reduced molecular ruby paves the way for thermally and photochemically switchable magnetic systems based on chromium complexes complementing the well-established iron(II) SCO systems.  相似文献   

8.
Complexes of CrIII, MnII, FeIII, CoII, NiII and CuII containing a macrocyclic pentadentate nitrogen–sulphur donor ligand have been prepared via reaction of a pentadentate ligand (N3S2) with transition metal ions. The N3S2 ligand was prepared by [1 + 1] condensation of 2,6-diacetylpyridine with 1,2-di(o-aminophenylthio(ethane. The structures of the complexes have been elucidated by elemental analyses, molar conductance, magnetic susceptibility measurements, i.r., electronic and e.p.r. spectral studies. The complexes are of the high spin type and are six-coordinate.  相似文献   

9.
Two tridentate Schiff bases having ONS and NNS donor sequences were prepared by condensing S-benzyldithiocarbazate (NH2NHCSSCH2Ph) (SBDTC) with pyridine-2-carboxaldehyde and salicylaldehyde, respectively. Complexes of these ligands with NiII, ZnII, CrIII, CoII, CuII, and SnII were studied and characterized by elemental analyses and various physico-chemical techniques. NiII, CuII, ZnII and SnII complexes were four-coordinate while the CrIII, SrIII and CoIII complexes were six-coordinate. The ONS Schiff base was moderately active against leukemia, while its zinc, antimony and cobalt complexes were strongly active against leukemic cells with DC50 = 0.35–5.00.  相似文献   

10.
Two lead(II)-thiocyanato coordination polymers with 5,5′-dimethyl-2,2′-bipyridine (5,5′-dm-2,2′-bpy) and 4,4′-dimethoxy-2,2′-bipyridine (4,4′-dmo-2,2′-bpy) as chelating ligands were synthesized and characterized by elemental analysis, IR and 1H-NMR spectroscopy, thermal behavior, and X-ray crystallography. These complexes have formulas [Pb(5,5′-dm-2,2′-bpy)(NCS)2] n (1) and [Pb(4,4′-dmo-2,2′-bpy)(NCS)2] n (2). The coordination numbers of PbII in 1 and 2 are four, PbN4, with “stereo-chemically active” electron pairs and hemidirected coordination spheres. Considering Pb···S as weak bonds, 1 and 2 are 1- and 2-D coordination polymers, respectively. The supramolecular features in these complexes are guided/controlled by weak directional intermolecular interactions.  相似文献   

11.
Summary The synthesis and characterization of MnII, CoII, NiII, CuII, ZnII, CdII UO 2 2+ , CrIII and FeIII complexes of biacetylmonoxime nicotinoyl hydrazone (H2BMNH) are reported. Elemental analysis, molar conductance, magnetic moment and spectral (i.r., visible and n.m.r.) measurements have been used to characterize the complexes. I.r. spectral data show that the ligand behaves in a bidentate and/or tridentate manner. An octahedral structure is proposed for the MnII, NiII, CrIII and FeIII complexes, while a square-planar structure is proposed for both CoII and CuII complexes on the basis of magnetic and spectral measurements.  相似文献   

12.
Summary N-salicylidene anthranilamide (H2SAA) and its CrIII, MnII, FeIII, CoII, NiII and CuII complexes were prepared and characterized by physicochemical and spectroscopic data. H2SAA enolizes to give a dibasic ONO donor set in the divalent metal complexes. It also binds to the trivalent metal ions in a nonenolized form using a monobasic ONN donor set. CoII is oxidized to CoIII during complexation. Octahedral geometries are proposed for CrIII, MnII, FeIII and CoIII complexes, while square planar geometries are suggested for the NiII and CuII complexes. Phenoxide bridging in the CrIII and FeIII complexes and enoxide bridging in the NiII and CuII complexes is proposed.  相似文献   

13.
Abstract

A new soluble vic-dioxime, l,4-bis(2-methoxyethyl-2, 3-bis(hydroxyimino)-5, 6-diphenylpiper-azine (LH2) has been synthesized as a mixture of isomers from dicyan di-N-oxide and 1, 2-diphe-nyl-l,2-bis(2′-methoxyethylamino)ethane, 1, which has been prepared through the reduction of the condensation product of benzaldehyde and 2-methoxyethylamine with the aluminium amalgam. LH2 gives N,N-coordinated planar metal complexes with CoII, NiII, CuII and PdII Oxidation of (LH)2Co in the presence of a base such as py or triphenylphoshine leads to octahedral complexes (LH)2Co(B)Cl. The uranyl complex of LH2 has a 1 :1 metal-ligand ratio and a binuclear structure with μ-hydroxo bridges.  相似文献   

14.
[Cu(I) {6,6′-bis(bromomethyl)-2,2′-bipyridine}2](PF6) complexes were used as metallo-supramolecular initiators for the polymerization of 2-oxazolines resulting in defined polymers with a central 6,6′-disubstituted 2,2′-bipyridine unit. The living character of the polymerization was demonstrated with the linear relationship between the weight-average molecular weight w and the [monomer]/[initiator] ratio as well as in the synthesis of block copolymers. The metal ions could be removed resulting in uncomplexed polymers with a free central metal binding unit.  相似文献   

15.
1-Ethoxycarbonyl-3-ferrocenyl-propane-1,3-dion and Ferrocene-1,1′bis(2,4-dioxobutanoic acid ethylester) as Ligands for Transition Metal Ions. Crystal Structure of Bis(1-ethoxycarbonyl-3-ferrocenyl-propane-1,3dionato)copper(II) The ligands 1-ethoxycarbonyl-3-ferrocenyl-propane-1,3-dion and ferrocene-1,1′-bis(2,4-dioxo-butanoic acid ethylester) have been prepared by reaction of acetylferrocene or 1,1′-diacetylferrocene and diethyl oxalate. They yield neutral chelates with CuII, NiII, ZnII, CoII, and MnII. The acid dissociation constants of the ligands and the stability constants of their metal complexes including FeII complexes are reported. The structure of bis(1-ethoxycarbonyl-3-ferrocenyl-propane-1,3-dionato)copper(II) was determined by X-ray structure analysis. A cis arrangement with a nearly square planar coordination sphere at the Cu atom is found.  相似文献   

16.
Summary The synthesis of a new macrocycle containing phenanthroline and pyridine subunits is described. The reaction of 2,9-bis(hydrazone)-1,10-phenanthroline with 2,6-bis-(bromomethyl) pyridine in the presence of MnII, CoII or NiII ion templates leads to the isolation, in high yield, of the seven-coordinate complexes [M(L3)Br2] (L3 = 4,5, 6,7,8,9-phenanthrolino-14,15,16-pyridino-1,2,5,8,11,12,15 heptaazacycloheptadecane,2,10-diene). The compounds were characterized by physical measurements, which indicated that in all the complexes the ligand is acting as a pentadentate N5 chelating agent.  相似文献   

17.
Summary Benzoylacetic acid (1 mol) interacts with ethylenediamine or with propanediamine (2 mol) to yield new N4 macrocycles 1,5,8,12-tetraazacyclotetradeca-2,4,9,11-tetraphenyl-3, 10-dicarboxylic-4,11-diacetic acid- 1,8-diene (L1) and 1,5,9,13-tetraazacyclohexadeca-2,4,10,12-tetraphenyl-3, 11-dicarboxylic-4,12-diacetic acid-1,9-diene (L2), respectively. These macrocycles have been successfully complexed with CrIII, FeIII, MnII, CoII, NiII, CuII and ZnII. The complexes of the divalent metal ions are non-electrolytes, while those of FeIII and CrIII are 1:1 electrolytes in DMSO. On the basis of ligand field spectra and magnetic moments an octahedral geometry has been proposed for all the complexes.  相似文献   

18.
Summary The synthesis and characterization of CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and UO inf2 sup2+ complexes of N-isonicotinamido-N-benzoylthiocarbamide (H2IBTC) are reported. I.r. spectral data show that the ligand behaves in a bidentate, tridentate and/or tetradentate manner. Different stereochemistries are proposed for CrIII, MnII, FeIII, CoII, NiII and CuII complexes on the basis of spectral and magnetic studies. The i.r. data indicate that the carbonyl oxygen of the benzoyl moiety is the backbone of chelation in most complexes.  相似文献   

19.
Abstract

Five new coordination complexes [MnII (L1)2(4,4′-bpy)]n (1), [NiII (L1)2(4,4′-bpy)]n (2), [ZnII (L1)2(4,4′-bpy)]n (3), [CuII (L1)2(phen)2]Cl2 (4) and [CuII 2(L1)2(2,2′-bpy)2]Cl2 (5) (HL1?=?3,4,5-trifluorobenzeneseleninic acid, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline), have been synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis and IR spectroscopy. Complexes 13 display similar layers structures. In 13, the adjacent layers are further connected through π···π interactions to form three-dimensional supramolecular structures. Complexes 4 and 5 show a dimer containing an eight-membered ring. The dimer extends into three-dimensional supramolecular structures through π···π interactions, C–H···F and C–H···Cl interactions.  相似文献   

20.
A series of cyclometalated PdII complexes that contain π‐extended R? C^N^N? R′ (R? C^N^N? R′=3‐(6′‐aryl‐2′‐pyridinyl)isoquinoline) and chloride/pentafluorophenylacetylide ligands have been synthesized and their photophysical and photochemical properties examined. The complexes with the chloride ligand are emissive only in the solid state and in glassy solutions at 77 K, whereas the ones with the pentafluorophenylacetylide ligand show phosphorescence in the solid state (λmax=584–632 nm) and in solution (λmax=533–602 nm) at room temperature. Some of the complexes with the pentafluorophenylacetylide ligand show emission with λmax at 585–602 nm upon an increase in the complex concentration in solutions. These PdII complexes can act as photosensitizers for the light‐induced aerobic oxidation of amines. In the presence of 0.1 mol % PdII complex, secondary amines can be oxidized to the corresponding imines with substrate conversions and product yields up to 100 and 99 %, respectively. In the presence of 0.15 mol % PdII complex, the oxidative cyanation of tertiary amines could be performed with product yields up to 91 %. The PdII complexes have also been used to sensitize photochemical hydrogen production with a three‐component system that comprises the PdII complex, [Co(dmgH)2(py)Cl] (dmgH=dimethylglyoxime; py=pyridine), and triethanolamine, and a maximum turnover of hydrogen production of 175 in 4 h was achieved. The excited‐state electron‐transfer properties of the PdII complexes have been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号