首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Two new macrocyclic ligands 1,4,7,9,12-pentaaza-10,11-dioxo-8,9,12,13-bis-(1-oxo-3-thio-2-hydropyrimidine)-trideca-7,13-diene, (L1) and 1,4,7,9,12-pentaaza-10,12-dioxo-8,9,13,14-bis-(1-oxo-3-thio-2-hydropyrimidine)-tetradeca-7,14-diene, (L2) and their complexes with CrIII, MnII, FeIII, CoII, NiII, CuII and ZnII have been synthesized, and characterized by elemental analysis, i.r., 1H-n.m.r., e.p.r., u.v.–vis. spectroscopy, magnetic susceptibility and conductance measurements. The conductivity measurements suggest that the complexes of divalent metal ions are 1:1 electrolytes whereas the trivalent metal ions are non-electrolytes. On the basis of electronic spectra and magnetic moment measurements the CrIII and FeIII complexes are octahedral, while the divalent metal complexes are tetrahedral except for the NiII and CuII complexes which are proposed to have square planar geometry. All the ligands and their complexes have been screened against gram-positive bacteria Staphylococcus aureus and gram-negative bacteria E. coli. The results show that they inhibit the growth of bacteria.  相似文献   

2.
1-Isonicotinoyl-4-benzoyl-3-thiosemicarbazide (IBtsc) and its CrIII, MnII, FeIII, CoII, NiII, CuII and ZnII complexes have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, u.v.–vis., i.r., n.m.r. and FAB mass spectral data. The room temperature e.s.r. spectra of the CrIII, FeIII and CuII complexes yield values, characteristic of octahedral, tetrahedral and square-planar complexes, respectively. The Mössbauer spectra of [Fe(IBtsc-H)Cl2] at room temperature and at 78 K suggest the presence of high-spin FeIII. The NiII, CrIII and CuII complexes show semiconducting behaviour in the solid state, but the ZnII complex is an insulator at room temperature. IBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.  相似文献   

3.
Summary N-salicylidene anthranilamide (H2SAA) and its CrIII, MnII, FeIII, CoII, NiII and CuII complexes were prepared and characterized by physicochemical and spectroscopic data. H2SAA enolizes to give a dibasic ONO donor set in the divalent metal complexes. It also binds to the trivalent metal ions in a nonenolized form using a monobasic ONN donor set. CoII is oxidized to CoIII during complexation. Octahedral geometries are proposed for CrIII, MnII, FeIII and CoIII complexes, while square planar geometries are suggested for the NiII and CuII complexes. Phenoxide bridging in the CrIII and FeIII complexes and enoxide bridging in the NiII and CuII complexes is proposed.  相似文献   

4.
Summary The synthesis and characterization of MnII, CoII, NiII, CuII, ZnII, CdII UO 2 2+ , CrIII and FeIII complexes of biacetylmonoxime nicotinoyl hydrazone (H2BMNH) are reported. Elemental analysis, molar conductance, magnetic moment and spectral (i.r., visible and n.m.r.) measurements have been used to characterize the complexes. I.r. spectral data show that the ligand behaves in a bidentate and/or tridentate manner. An octahedral structure is proposed for the MnII, NiII, CrIII and FeIII complexes, while a square-planar structure is proposed for both CoII and CuII complexes on the basis of magnetic and spectral measurements.  相似文献   

5.
Summary The chelating behaviour of two biologically active ligands, pyridine-2-carboxaldehyde(4-phenyl) thiosemicarbazone(L1H) and pyridine-2-carboxaldehyde thiosemicarbazone(LH), towards FeIII, CoIII, FeII and RhIII has been investigated. The ligands act as tridentate N–N–S donors, resulting in the formation of bis-chelate complexes of the type MIII(A)2X·nH2O (A=L1 or L; X=Cl, ClO4; M=CoIII, RhIII, FeIII), FeII(L1H)2SO4·2H2O and FeII(L1)2·H2O. Biological activity of the ligands and the metal complexes in the form ofin vitro antibacterial activities towardsE. coli has been evaluated and the possible reasons for enhancement of the activity of ligands on coordination to metal ion is discussed.  相似文献   

6.
Trinuclear systems of formula [{Cr(LN3O2Ph)(CN)2}2M(H2LN3O2R)] (M=MnII and FeII, LN3O2R stands for pentadentate ligands) were prepared in order to assess the influence of the bending of the apical M−N≡C linkages on the magnetic anisotropy of the FeII derivatives and in turn on their Single-Molecule Magnet (SMM) behaviors. The cyanido-bridged [Cr2M] derivatives were obtained by assembling trans-dicyanido CrIII complex [Cr(LN3O2Ph)(CN)2] and divalent pentagonal bipyramid complexes [MII(H2LN3O2R)]2+ with various R substituents (R=NH2, cyclohexyl, S,S-mandelic) imparting different steric demand to the central moiety of the complexes. A comparative examination of the structural and magnetic properties showed an obvious effect of the deviation from straightness of the M−N≡C alignment on the slow relaxation of the magnetization exhibited by the [Cr2Fe] complexes. Theoretical calculations have highlighted important effects of the bending of the apical C−N−Fe linkages on both the magnetic anisotropy of the FeII center and the exchange interactions with the CrIII units.  相似文献   

7.
Summary The synthesis and characterization of CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and UO inf2 sup2+ complexes of N-isonicotinamido-N-benzoylthiocarbamide (H2IBTC) are reported. I.r. spectral data show that the ligand behaves in a bidentate, tridentate and/or tetradentate manner. Different stereochemistries are proposed for CrIII, MnII, FeIII, CoII, NiII and CuII complexes on the basis of spectral and magnetic studies. The i.r. data indicate that the carbonyl oxygen of the benzoyl moiety is the backbone of chelation in most complexes.  相似文献   

8.
In this study, the Schiff base ligands H2L1–H2L3 and their CuII, CoII, NiII, FeIII RuIII and VOIV complexes have been prepared and characterized by spectroscopic and analytical techniques. All the complexes are mononuclear. Keto-enol tautomeric forms of the ligands have been investigated in polar and apolar solvents. The ligands favor the keto-form in the C7H8 and C6H14. The C–C coupling reaction of the 2,6-di-t-butylphenol has been investigated by the CoII and CuII complexes. Thermal properties of the complexes have been assessed using thermal techniques and similar properties were found. In the FeIII and RuIII complexes, firstly, the coordinated water molecule is lost from the complex; in the second step, the chloride ion leaves the molecule in the 300–350 °C temperature range. Finally, the complexes decompose to the appropriate metal oxide at the higher temperature ranges. The electrochemical properties of the complexes have been studied in the two different solvents (DMF and CH3CN).  相似文献   

9.
Complexes of CrIII, MnII, FeIII, CoII, NiII and CuII containing a macrocyclic pentadentate nitrogen–sulphur donor ligand have been prepared via reaction of a pentadentate ligand (N3S2) with transition metal ions. The N3S2 ligand was prepared by [1 + 1] condensation of 2,6-diacetylpyridine with 1,2-di(o-aminophenylthio(ethane. The structures of the complexes have been elucidated by elemental analyses, molar conductance, magnetic susceptibility measurements, i.r., electronic and e.p.r. spectral studies. The complexes are of the high spin type and are six-coordinate.  相似文献   

10.
Binuclear Schiff base complexes derived from glycine (Gly) and 3-acetylpyridine (3-APy) in the presence of M(OAc)2 [M = CoII, NiII, CuII, ZnII and CdII] have been synthesized. The role of pH in promoting the condensation of glycine and 3-acetylpyridine, as well as the substitution of acetates by hydroxide ion, has been discussed. Also, the reaction of glycine with 3-acetylpyridine in the presence of MCl2 [M = CoII and NiII] and MCl3 [M = FeIII and CrIII] yields mono- and/or binuclear complexes containing both of glycine and 3-acetylpyridine without condensation. Both types of complex were isolated and characterized by chemical analysis, conductance, spectral (u.v.–vis., i.r., and 1H-n.m.r.), magnetic and thermal measurements.  相似文献   

11.
Summary FeIII, CoII, NiII and CuII complexes of a new Schiff base, 2-phenyl-1,2,3-triazole-4-carboxalidene-2-aminophenol (PTCAP), have been synthesized and characterized by elemental analyses, molar conductance and magnetic susceptibility measurements, and by u.v.-vis., i.r. and e.p.r. spectral observations. The studies indicate an octahedral structure for the complexes with the general formula [ML2] (M = CoII, NiII or CuII.; L = PTCAP) or [M′(OH)L2] (M′ = FeIII). The i.r. spectra suggest that the ligand acts as a tridentate (NNO) donor towards CoII, NiII and CuII, and, in the FeIII complex, one of the two ligand molecules acts as a bidentate (NO) donor and the other as a tridentate donor. The M?ssbauer spectrum of the FeIII complex suggests the presence of a spin equilibrium at room temperature. Cyclic voltammograms are also recorded for the CuII and FeIII complexes.  相似文献   

12.
Summary Complexes of the potentially tetradentate ligand isonitroso-acetylacetone dithiosemicarbazone (inbtH2) of formulae [Ti(inbtH2)Cl2]Cl2, [M(inbt)], where M = VIV O, MnII, NiII or ZnII, [M(inbtH2)X2], where M = CoII and X = Cl, or M = NiII and X = Cl, Br or I, and [M(inbtH2)Cl2]Cl, where M = CrIII or FeIII, have been prepared and characterized by physico-chemical and spectroscopic methods. In all the compounds the metal is coordinated by the thiocarbonyl sulphur and imine nitrogen, as revealed by i.r. studies. The n.m.r. spectra of the complexes of NiII and ZnII confirm coordination through nitrogen. Possible structures for the complexes are proposed. The Mössbauer spectrum of the FeIII complex is discussed.  相似文献   

13.
Two tridentate Schiff bases having ONS and NNS donor sequences were prepared by condensing S-benzyldithiocarbazate (NH2NHCSSCH2Ph) (SBDTC) with pyridine-2-carboxaldehyde and salicylaldehyde, respectively. Complexes of these ligands with NiII, ZnII, CrIII, CoII, CuII, and SnII were studied and characterized by elemental analyses and various physico-chemical techniques. NiII, CuII, ZnII and SnII complexes were four-coordinate while the CrIII, SrIII and CoIII complexes were six-coordinate. The ONS Schiff base was moderately active against leukemia, while its zinc, antimony and cobalt complexes were strongly active against leukemic cells with DC50 = 0.35–5.00.  相似文献   

14.
Summary Eight aluminium and gallium heteropoly undecatungstometalate complexes of general formula Kn[M(H2O)-XW11O39]·nH2O, where M=AlIII, GaIII, and X=CrIII, FeIII, CoII or CuII, have been prepared and characterized by elemental analysis, cation exchange i.r., u.v., x-ray powder diffraction and by thermal analyis. The compounds are stable in acidic solution. I.r., u.v. spectra and x-ray diffraction studies show that the structure of the compounds derives from the Keggin structure. Their thermostability is higher than that of the homologous dodecatungstometalates.  相似文献   

15.
The synthesis and characterization of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone (CDOSC) complexes are reported. The ligand CDOSC yields: [ML2 Cl2] and [ML2 Cl2] Cl type complexes, where M = CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and HgII, L = CDOSC. Structures of the complexes were determined using elemental analysis, molar conductivity, magnetic measurements, i.r. and electronic, as well as n.m.r spectra. CDOSC acts as a bidentate ligand in all the complexes. All the newly synthesized metal complexes, as well as the ligand, were screened for their antibacterial activity. All the complexes exhibit strong inhibitory action against Gram (+) bacteria Staphylococcus aureus and Gram (−) bacteria Escherichia coli. The antibacterial activities of the complexes are stronger than those of the ligand CDOSC itself.  相似文献   

16.
Summary The structures of the volatile bimetalliciso-propoxides of later 3d metals with the general formula, [M{Al(OPr-i)4}n] where M=CrIII, MnII, FeIII, CoII, NiII and CuII have been investigated by visible reflectance and electron spin resonance spectroscopy as well as magnetic measurements.  相似文献   

17.
Summary Coordination complexes of phenanthrenequinone monoxime with VIVO, CrIII, FeIII, NiII or CuII have been synthesised and characterized by magnetic moment, i.r., and thermogravimetric analysis, and electronic and electron spin resonance spectral studies.  相似文献   

18.
A series of mono- and heterodinuclear complexes of type MLnH2 and MLnM′ where M = CoIII, CrIII, ZnII and M′ = CuII, ZnII have been synthesized and characterized. The non-macrocyclic ligands LnH4 contain two geometrically distinct compartments, hexa- (N4O2) and tetradentate (O4) compartments which are bridged by phenolic oxygen atoms. The dinuclear complexes were prepared in stepwise reactions. The non-macrocyclic ligand showed a site specificity of metal ions upon the synthetic procedure. The results obtained reveals that in case of using ligand L2H4 only an isomer (trans-pyridines and cis-phenolates) among three possible geometrical isomers is formed. The metal site scrambling in the prepared complexes were not also observed in the reaction conditions used. The crystal structure of [CrIIIL2H2]ClO4 was determined and discussed.  相似文献   

19.
The exchange coupling constants (J) were calculated and the spin density distributions were analyzed in the B3LYP/TZV approximation for the complex anions [L2M(1)IIILM(2)IIL2] n, where L is ligand (L is oxalate, oxamide, dithiooxamide, hydroxamate) and M(1) and M(2) are atoms of the tri- and divalent 3d-transition metals, respectively, and n- is the charge of the anion. The largest J values were found for the complexes formed by the CrIII-NiII and CrIII-CoII pairs with the dithiooxamide ligands. Differences between the calculated and experimental J values are at most a few cm−1.  相似文献   

20.
The ability of the tetraaza‐dithiophenolate ligand H2L2 (H2L2 = N,N′‐Bis‐[2‐thio‐3‐aminomethyl‐5‐tert‐butyl‐benzyl]propane‐1,3‐diamine) to form dinuclear chromium(III) complexes has been examined. Reaction of CrIICl2 with H2L2 in methanol in the presence of base followed by air‐oxidation afforded cis,cis‐[(L2)CrIII2(μ‐OH)(Cl)2]+ ( 1a ) and trans,trans‐[(L2)CrIII2(μ‐OH)(Cl)2]+ ( 1b ). Both compounds contain a confacial bioctahedral N2ClCrIII(μ‐SR)2(μ‐OH)CrIIIClN2 core. The isomers differ in the mutual orientation of the coligands and the conformation of the supporting ligand. In 1a both Cl? ligands are cis to the bridging OH function. In 1b they are in trans‐positions. Reaction of the hydroxo‐bridged complexes with HCl yielded the chloro‐bridged cations cis,cis‐[(L2)CrIII2(μ‐Cl)(Cl)2]+ ( 2a ) and trans,trans‐[(L2)CrIII2(μ‐Cl)(Cl)2]Cl ( 2b ), respectively. These bridge substitutions proceed with retention of the structures of the parent complexes 1a and 1b .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号