首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The authors report the formation of highly oriented wrinkling on the surface of the bilayer [polystyrene (PS)/poly(vinyl pyrrolidone) (PVP)] confined by a polydimethylsiloxane (PDMS) mold in a water vapor environment. When PVP is subjected to water vapor, the polymer loses its mechanical rigidity and changes to a viscous state, which leads to a dramatic change in Young's modulus. This change generates the amount of strain in the bilayer to induce the wrinkling. With a shape-controlled mold, they can get the ordered wrinkles perfectly perpendicular or leaned 45 degrees to the channel orientation of the mold because the orientation of the resultant force changes with the process of water diffusion which drives the surface to form the wrinkling. Additionally, they can get much smaller wrinkles than the stripe spacing of PDMS mold about one order. The wrinkle period changes with the power index of about 0.5 for various values of the multiplication product of the film thicknesses of the two layers, namely, lambda approximately (h(PS)h(PVP))(1/2).  相似文献   

2.
A bio-inspired method is used to render controlled wrinkling surface patterns on supramolecular architectures assembled from polyoxometalate (POM) clusters. It involves a polyamine-multivalent anion interaction generating positively charged coacervates, which while dictating the assembly of POM into spherical structures further facilitate an interesting surface morphogenesis with wrinkling patterns. This spontaneous surface wrinkling depends on the type of multivalent anion and the pH. As the polyamine-anion interaction becomes stronger, the wrinkles turn denser with lesser depth, which eventually undergoes post-buckling to engender a complex surface pattern. Interestingly, the order of influence exerted by different anions on the morphology follows the Hofmeister series. Moreover, the mild synthesis conditions keep the functional POM units dispersed in the sphere with a structural transformability to their lacunary form.  相似文献   

3.
A bio‐inspired method is used to render controlled wrinkling surface patterns on supramolecular architectures assembled from polyoxometalate (POM) clusters. It involves a polyamine‐multivalent anion interaction generating positively charged coacervates, which while dictating the assembly of POM into spherical structures further facilitate an interesting surface morphogenesis with wrinkling patterns. This spontaneous surface wrinkling depends on the type of multivalent anion and the pH. As the polyamine‐anion interaction becomes stronger, the wrinkles turn denser with lesser depth, which eventually undergoes post‐buckling to engender a complex surface pattern. Interestingly, the order of influence exerted by different anions on the morphology follows the Hofmeister series. Moreover, the mild synthesis conditions keep the functional POM units dispersed in the sphere with a structural transformability to their lacunary form.  相似文献   

4.
Wrinkles with two distinct wavelengths formed sequentially on the same surface are investigated. A series of aligned wrinkles are formed through local strain application on a partially crosslinked elastomer. After the formation of these primary wrinkles, the elastomer is fully crosslinked, and a mechanical compressive strain is applied to the sample orthogonal to the primary wrinkles. This mechanical strain results in smaller secondary wrinkles superimposed on the larger primary aligned wrinkles. Resulting biaxial morphologies suggest that the primary pattern directs the formation of the smaller wrinkles. The modulus mismatch of the substrate on primary and secondary wrinkle formation dictates the ratio between the two resulting wavelengths, as well as the specific biaxial morphologies, ranging from zigzag ridges to ellipsoidal bumps or corn‐on‐the‐cob structures to the classic herringbone. The sequential strain wrinkling process has the potential to be used on an industrial scale for the facile formation of surface topography with two discrete, tunable lateral dimensions over large surface areas. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

5.
We present the results of systematic model experimental investigations on wrinkling instabilities which develop on alginate-based coatings when they are wetted by swelling electrolyte drops. The wrinkles first appear randomly within the wet spot, before they selectively protrude out around the periphery in a quasiperiodical wrinkle pattern. We discuss the critical parameters that drive the emergence (ionic strength and swelling rate) and spatial feature (size and periodicity) of these swelling-induced structures on such complex functional coatings. Beyond their relative aesthetics and their fundamental interest related to morphological instabilities, these reconstruction structures which are invisible to the naked eye can develop in a variety of technological processes (inkjet printing for instance), affecting irreversibly the quality of the products.  相似文献   

6.
近年来 ,在简单体系上形成复杂规则的图案已引起诸多学者的注意 ,其中以聚合物为母体的体系发展了模板、局部紫外照射和激光诱导等一系列技术 ,从而得到可控的表面图案[1~ 6] .本文用激光刻蚀法对溅射在聚合物膜上的金属薄膜进行处理 ,在热诱导情况下使金属 /聚合物膜系表面产生了规则的图案 .薄膜热应力的可控释放作用和激光刻蚀造成的区域局限作用被认为是诱导这种可控图案产生的两种基本要素 .通过控制激光刻蚀区域 ,可控制薄膜表面形貌变化 ,从而实现可控的图案化设计 .1 实验部分1.1 原料及仪器 聚苯乙烯 (PS) :北京燕山石油化工…  相似文献   

7.
Photoinduced surface wrinkling is demonstrated for a low molecular azo compound confined between a substrate and a thin inorganic elastic layer. The wrinkling process is investigated by time‐resolved light scattering as well as by two‐dimensional autocorrelation analysis of microscopic images. It is shown that the temporal evolution of the wrinkling pattern is directly controlled by the amount of photons absorbed by the sample and that there is no significant dependence of the equilibrium wavelength on irradiation intensity. Finally, the comparison of thermal and photoinduced wrinkling revealed that photoinduced wrinkles are characterized by a narrower mode distribution and less coarsening.  相似文献   

8.
This article reviews recent applications of controlled wrinkling for creating structured and/or patterned interfaces, and its use in metrology. We discuss how wrinkles develop as a result of in-plane compression of thin sheets. As the wavelength of wrinkles is only dependent on elastic properties and thickness of the sheets, the phenomenon can be used in metrology for determination of elastic properties. The second aspect is its use for patterning and topographical structuring of surfaces. If mechanical properties and thickness are well controlled, wrinkle orientation and geometry can be tailored. Wavelengths between fractions of a micron and many micrometers are feasible. This process is based on a macroscopic deformation and upscaling to larger areas is possible which provides an attractive alternative to bottom-up or top-down approaches for surface patterning. We describe the formation of stable surface wrinkles in thin sheets of different materials having different surface chemistries, report on applications, and discuss the usefulness of wrinkles for building hierarchical structures.  相似文献   

9.
报道了基于非刻蚀法的表面起皱机制来实现高分子薄膜表面的周期性梯度图案的简单可控制备.即对于处于机械拉伸状态的聚二甲基硅氧烷(PDMS)弹性基底,在其底部垫入"积木",而后对其进行紫外-臭氧(UVO)和氧等离子体(OP)的联合表面处理."积木"的加入引起了表面处理后表面硅氧层(SiOx)梯度厚度的形成,进而当释放拉伸应变后,诱导产生了梯度皱纹图案.结果表明:当UVO与OP联用处理时,不仅实现了较小拉伸应变下梯度皱纹形貌的制备,而且扩大了UVO单独使用时梯度皱纹周期的变化范围.通过OP与UVO的处理顺序和处理时间等因素的简单调节,进一步实现了不同梯度皱纹微结构的精细构筑.  相似文献   

10.
We reported a facile and bio-inspired strategy for obtaining antireflective(AR) coating through polymerization-induced self-wrinkling. Upon irradiation of light, the complex wrinkle micro-patterns with different morphologies were generated spontaneously on the surface of coating during photo-crosslinking, which enables the photo-curing coating can decrease reflection. The resulting photo-curing coating exhibits a high transmittance over 90% and low reflection below 5%~8%, with an efficiency antireflection of 4%~7% compared to the flat blank coating. The successful application of these AR coatings with wrinkles pattern to encapsulate the thin film solar cells results in appreciable photovoltaic performance improvement of more than 4%~8%, which benefits from the decrease of the light reflection and increase of optical paths in the photoactive layer by the introduction of wrinkling pattern.Furthermore, the efficiency improvements of the solar cells are more obvious, with a remarkable increase of 8.5%, at oblique light incident angle than that with vertical light incident angle  相似文献   

11.
Wetting on a corrugated surface that is formed via wrinkling of a hard skin layer formed by UV oxidation (UVO) of a poly(dimethylsiloxane) (PDMS) slab is studied using advancing and receding water contact angle measurements. The amplitude of the wrinkled pattern can be tuned through the pre-strain of the PDMS prior to surface oxidation. These valleys and peaks in the surface topography lead to anisotropic wetting by water droplets. As the droplet advances, the fluid is free to move along the direction parallel to the wrinkles, but the droplet moving orthogonal to the wrinkles encounters energy barriers due to the topography and slip-stick behavior is observed. As the wrinkle amplitude increases, anisotropy in the sessile droplet increases between parallel and perpendicular directions. For the drops receding perpendicular to the wrinkles formed at high strains, the contact angle tends to decrease steadily towards zero as the drop volume decreases, which can result in apparent hysteresis in the contact angle of over 100°. The wrinkled surfaces can exhibit high sessile and advancing contact angles (>115°), but the receding angle in these cases is generally vanishing as the drop is removed. This effect results in micrometer sized drops remaining in the grooves for these highly wrinkled surfaces, while the flat analogous UVO-treated PDMS shows complete removal of all macroscopic water drops under similar conditions. These wetting characteristics should be considered if these wrinkled surfaces are to be utilized in or as microfluidic devices.  相似文献   

12.
The thermal stability of a model system consisting of a polymer film on a Si substrate capped by a thin metal layer has been investigated. When the model system is heated to a sufficiently high temperature characteristic surface wrinkling structures are formed with well defined periodicity over large areas. It is suggested that this wave-like surface morphology is driven by the thermal expansion coefficient mismatch of the different layers. A mechanism based on bending of a thin stiff surface on a thin elastic medium has been adopted to predict the pattern periodicity which gives satisfactory results with the experimental values.  相似文献   

13.
Micro-periodic structures exhibiting shape memory have been fabricated on organic–inorganic hybrid films. The microscale structures are obtained by forming wrinkles via buckling of the stiff surface layer. The surface-modified layers are obtained by surface photopolymerization or by oxidation of the hybrid films. The microscale structures are spontaneously formed by the shrinkage of the underlayer via gelation. The surface microstructures on titania- or silica-based films with hydrophilic swellable polymers exhibit a humidity response, i.e., a shape memory effect. This is observed when the surface microstructure disappears and is subsequently recovered with cyclic variation of the surrounding humidity. Micro-rolls are also fabricated by the selective swelling of surface-modified layers.  相似文献   

14.
A new miniaturization protocol is demonstrated using stretching and relaxation of an elastomer substrate. A designed microstructure is formed on the stretched substrate and subsequently becomes miniaturized when the substrate relaxes. More importantly, the miniaturized structures can be transferred onto a new substrate for further miniaturization or can be utilized as stamps for nanolithography of designated materials. As an example of this approach, an elastic mold was first cast from a Si mold containing periodic line arrays of 1.5-microm line width. Upon relaxation, line width is reduced to 240 nm. The new elastomer may be used as stamps for micro- and nanofabrication of materials such as proteins. The polymer surface roughness or wrinkling behavior at nanoscale is found to follow classic stability model in solid mechanics. This observation provides means to design and control the surface roughness to meet specific requirements.  相似文献   

15.
Periodic wrinkling across different scales has received considerable attention because it not only represents structure failure but also finds wide applications. How to prevent wrinkling or create desired wrinkling patterns is non‐trivial because the dynamic evolution of wrinkles is a highly nonlinear problem. Herein, we report a simple yet powerful method to dynamically tune and/or erase wrinkling patterns with visible light. The light‐induced photoisomerization of azobenzene units in azopolymer films leads to stress release and consequently to the erasure of the wrinkles. The wrinkles in unexposed regions are also affected and oriented perpendicular to the exposed boundary during the stress reorganization. Theoretical models were developed to understand the dynamics of the reversible photoisomerization‐induced wrinkle evolution. This method can be applied for designing functional materials/devices, for example, for the reversible optical writing/erasure of information as demonstrated here.  相似文献   

16.
Topological patterns on polymer surfaces can significantly alter and control adhesion. In this study, the effect of surface wrinkles on a spherical surface on adhesion has been studied. Surface wrinkling induced by swelling of a crosslinked polydimethylsiloxane elastomer constrained by a stiff, thin surface layer (silicate) is used to produce topographic features of various length scales over a large curved area. By controlling the properties of the stiff layer and the applied strain conditions, surface wrinkles of varying amplitude and wavelength are obtained. The effect of wrinkle morphology on adhesion is quantified, and the results display a transition from enhancement of adhesion to decrease depending upon wrinkle dimensions. A simple phenomenological model is proposed that describes the change of adhesion behavior as a function of wrinkle morphology. Our results provide a critical understanding toward tuning the adhesion behavior of nonplanar surfaces consisting of periodic topographic structures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

17.
An electric field-aided process was introduced for a curable casting process. As a micro/nanosized pattern mask, a lotus leaf, which has a hierarchical structure, was used. The process consists of two steps: (1) applying an electric field to a liquid polymer and solidifying the polymer for use as a negative mold, and (2) using the negative polymer mold to fabricate a replicated poly(ethylene oxide) (PEO) surface in the original shape of the lotus leaf. In this process, the applied electric field induces unstable vibration of the liquid polymer, due to electrokinetic phenomena. The electrokinetic fluid motion resulted in well-replicated PEO surfaces. The quality of the fabricated surface was highly dependent on the applied field and pressure. We believe that this technique improves the quality of the standard nanocasting method and will be useful for fabricating micro/nanosized structures.  相似文献   

18.
Spatial structures break their symmetry under the influence of shear stress arising from fluid flow. Here, we present surface instabilities appearing on chitosan tubes when an acidic solution of chitosan with various molecular weight is injected into a pool of sodium hydroxide solution. At slow flow rates wrinkle-to-fold transition takes place along the direction of the flow yielding a banded structure. For greater injection rates we observe coexisting modes of wrinkles and folds which are stabilized to periodic wrinkles when the alkaline concentration is increased. The instabilities are characterized by the scaling laws of the pattern wavelength and amplitude with the tube characteristics. Our experimental adaptation of mechanical instabilities provides a new in situ method to create soft biomaterials with the desired surface morphology without the use of any prefabricated templates.  相似文献   

19.
Surface wrinkling is a promising route to control the mechanical, electrical, and optical properties of materials in a wide range of applications. However, previous artificial wrinkles are restricted to single or random orientation and lacks selectivity. To address this challenge, this study presents multidirectional wrinkle patterns with high selectivity and orientation through sequential uniaxial strain with conformal polymeric shadow masks. The conformal but nontraceable polymeric stencil with microapertures are adhered to a flat substrate prior to oxidation, which forms discrete and parallel wrinkles in confined domains without any contamination. By fully investigating the process, this study displays compound topography of wrinkles consisting of wrinkle islands and surrounding secondary wrinkles on the same surface. With this topography, various diffusion properties are presented: from semi‐transparent yet diffusive films to multidirectional diffusive films, which will be available for new types of optical diffuser applications.  相似文献   

20.
The mechanisms that cause skin wrinkling in response to chronic exposure to sunlight are unknown. We investigated the possibility that wrinkling of Skh-1 hairless mice is associated with an ultraviolet (UV) radiation-induced immunologic alteration. Exposing Skh-1 hairless mice to a regimen of nonerythemal UV-B (290-320 nm) radiation induced skin wrinkles after 6-7 weeks. Concomitant treatment with cyclosporin A decreased the time to the onset of wrinkles to approximately 4 weeks. Exposing HRS/J hairless mice or athymic nude mice to a similar nonerythemal UV-B radiation regimen for 10 weeks failed to induce skin wrinkles. Concomitant administration of cyclosporin A and UV-B radiation for 7 weeks to HRS/J hairless mice induced no skin wrinkles. Ultraviolet-B or UV-B plus cyclosporin A exposure caused increased immunohistochemical staining for Ia and F4/80 antigens in the upper dermis of tissue from Skh-1 mice, as compared to controls. Treating Skh-1 mice with UV-B radiation plus cyclosporin A was also associated with a large increase in the number of CD3+ cells in the dermis. These staining patterns were absent in similarly treated HRS/J hairless mice. Dermal mast cell numbers in Skh-1 mice were 2-3-fold higher than in HRS/J, athymic nude or NSA mice. Treatment with cyclosporin A increased Skh-1 dermal mast cell numbers approximately 2-fold but had no effect on the dermal mast cell numbers in HRS/J or NSA mice. Based on these findings we postulate that UV-B light and cyclosporin A exacerbate an immunological condition in Skh-1 mice, one consequence of which is manifested as skin wrinkles. Thus, the induction of skin wrinkles in this mouse strain may have no relevance to the wrinkles observed in human skin after chronic exposure to sunlight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号