首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel, simple and rapid method, termed dispersive liquid–liquid microextraction with solidification of floating organic drop coupled to high performance liquid chromatography, was developed for analysis of three phenolic oestrogens including diethylstilbestrol, dienestrol and hexestrol in human urine and water samples. The parameters of dispersive liquid–liquid microextraction with solidification of floating organic drop procedure including sample pH, type and volume of disperser solvent, and type and volume of extraction solvent were optimised. High performance liquid chromatography was applied for the phenolic oestrogens’ analysis. Under the optimum extraction and detection conditions, excellent analytical performances were attained. Good linear relationships (r ≥ 0.998) between peak area and concentration for diethylstilbestrol and dienestrol were optimised from 0.1 to 20 µg/mL, for hexestrol from 2 to 50 µg/mL. Method detection limits of 28.6–666.7 ng/mL were achieved. Satisfactory relative recoveries ranging from 72% to 122% were determined for urine, lake and tap water samples, with relative standard deviations (RSDs, n = 6) of 1.5–9.8%. The developed dispersive liquid–liquid microextraction with solidification of floating organic drop-high performance liquid chromatography method has a great potential in routine residual analysis of trace phenolic oestrogens in biological and water samples.  相似文献   

2.
Dispersive liquid–liquid microextraction based on solidification of floating organic droplet was developed for the extraction of methadone and determination by high‐performance liquid chromatography with UV detection. In this method, no microsyringe or fiber is required to support the organic microdrop due to the usage of an organic solvent with a low density and appropriate melting point. Furthermore, the extractant droplet can be collected easily by solidifying it at low temperature. 1‐Undecanol and methanol were chosen as extraction and disperser solvents, respectively. Parameters that influence extraction efficiency, i.e. volumes of extracting and dispersing solvents, pH, and salt effect, were optimized by using response surface methodology. Under optimal conditions, enrichment factor for methadone was 134 and 160 in serum and urine samples, respectively. The limit of detection was 3.34 ng/mmL in serum and 1.67 ng/mL in urine samples. Compared with the traditional dispersive liquid–liquid microextraction, the proposed method obtained lower limit of detection. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high‐density and toxic solvents of traditional dispersive liquid–liquid microextraction method. The proposed method was successfully applied to the determination of methadone in serum and urine samples of an addicted individual under methadone therapy.  相似文献   

3.
A dispersive liquid-liquid microextraction method was developed for the determination of fungicides (diethofencarb and pyrimethanil) in aqueous samples. It is based on the use of solidified floating organic drops combined with high-performance liquid chromatography. Extraction solvent and dispersive solvent, extraction time and salt effect were optimized. Under optimized conditions, the enrichment factors for a 5?mL water sample are between 145 and 161. The limits of detection for diethofencarb and pyrimethanil are 0.24 and 0.09???g ? L?1, respectively. The method offers good repeatability and high recovery. Compared with dispersive liquid-liquid microextraction, it has a higher enrichment factor, high precision due to the ease with which the solidified floating phase is transferred, thus avoiding the loss of analyte. Toxic solvents were replaced by 1-dodecanol with its much lower toxicity. The method has been successfully applied to the determination of the two fungicides in tap water, lake water, and river water.  相似文献   

4.
We have extracted ten phthalate esters (C1 to C8) using six different micro-scale methods for extraction, and then separated them by capillary liquid chromatography coupled to UV detection. The methods included liquid-liquid extraction, ultrasonic-assisted extraction, microwave-assisted extraction, dispersive liquid-liquidmicroextraction, dispersive liquid-liquid microextraction solidification of floating organic droplets, and cloud point extraction. The linear range of the analytes is from 0.5 to 50 μg mL?1, and the detection limits range from 0.02 to ~0.17 μg mL?1. The precision and accuracy of all intra- and inter-day analyses are <5.5%. We find that dispersive liquid-liquid microextraction solidification of floating organic droplet (DLLME-SFO) is the best method for quantification of most phthalate esters in water samples and cosmetics because of its low limit of detection and high extraction efficiencies.
Figure
Phthalate esters were extracted by six micro-scale extraction methods and then determinated by capillary liquid chromatography coupled with ultraviolet detector (CapLC-UV).  相似文献   

5.
A novel air assisted liquid–liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid–liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μg L−1. The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3–13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly.  相似文献   

6.
A method for analysis of diethofencarb and pyrimethanil in apple pulp and peel was developed by using dispersive liquid–liquid microextraction based on solidification of a floating organic droplet (DLLME-SFO) and high-performance liquid chromatography with diode-array detection (HPLC–DAD). Acetonitrile was used as the solvent to extract the two fungicides from apple pulp and peel, assisted by microwave irradiation. When the extraction process was finished, the target analytes in the extraction solvent were rapidly transferred from the acetonitrile extract to another extraction solvent (1-undecanol) by using DLLME-SFO. Because of the lower density of 1-undecanol than that of water, the finely dispersed droplets of 1-undecanol collected on the top of aqueous sample and solidified at low temperature. Meanwhile, the tiny particles of apple cooled and precipitated. Recovery was tested for a concentration of 8 μg kg−1. Recovery of diethofencarb and pyrimethanil from apple pulp and peel was in the range 83.5–101.3%. The repeatability of the method, expressed as relative standard deviation, varied between 4.8 and 8.3% (n = 6). Detection limits of the method for apple pulp and peel varied from 1.2–1.6 μg kg−1 for the two fungicides. Compared with conventional sample preparation, the method has the advantage of rapid speed and simple operation, and has high enrichment factors and low consumption of organic solvent.  相似文献   

7.
A novel dispersive solid‐phase extraction combined with vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high‐performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean‐up of the extract was conducted by dispersive solid‐phase extraction using activated carbon as the sorbent. The vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1‐undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2–500 ng/g with correlation coefficients (r) of 0.9993–0.9999. The limits of detection were in the range of 0.08–0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices.  相似文献   

8.
A liquid‐phase microextraction technique was developed using dispersive liquid‐liquid microextraction based on solidification of floating organic drop combined with flame atomic absorption spectrometry, for the extraction and determination of trace amounts of cobalt in water samples. Microextraction efficiency factors, such as the type and volume of extraction and dispersive solvents, pH, extraction time, the chelating agent amount, and ionic strength were investigated and optimized. Under optimum conditions, an enrichment factor of 160 was obtained from 10.0 mL of water sample. The calibration graph was linearin the range of 1.15‐110 μg L?1 with a detection limit of 0.35 μg L?1. The relative standard deviation for ten replicate measurements of 10 and 100 μg L?1 of cobalt were 3.26% and 2.57%, respectively. The proposed method was assessed through the analysis of certified reference water or recovery experiments.  相似文献   

9.
A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid‐phase extraction assisted reversed‐phase dispersive liquid–liquid microextraction based on solidification of floating organic droplet combined with ion‐pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid‐phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0–100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10–100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements.  相似文献   

10.
A free dispersive method, air-assisted in situ deep eutectic solvent decomposition followed by the solidification of floating organic droplets liquid-liquid microextraction was indicated in this study. This technique was utilized to simultaneously ascertain some azole antifungal drugs prior to high-performance liquid chromatography. In this research, a quasi-hydrophobic deep eutectic solvent was formed from tetrabutylammonium bromide and 1-dodecanol as an organic solvent at a 1:2 molar ratio. The synthesized deep decomposition in the sample solution caused in situ dispersion of extraction solvent and analytes. Air-assisted enhanced a dispersion condition in the sample solution. 1-Dodecanol as a green option was replaced with typical extraction solvents providing the advantages of a suitable freezing point near room temperature and low density. The effect of important analytical parameters on the extraction recovery of analytes was assessed. Under these optimal conditions, the limits of detection and the limits of quantitation determined were in the range of 0.5–2.8 and 1.5–9 μg/L, for water, urine and plasma samples, respectively. The intra-day and inter-day relative standard deviations (n = 5) were calculated to be 2.9–4.6 and 4.2–8.9%, respectively. The results represented the effectiveness of the developed method for the extraction and determination of analytes in biological samples.  相似文献   

11.
A dispersive liquid–liquid microextraction procedure based on solidification of floating organic droplet has been investigated for the determination of fungicides (cyprodinil, difenoconazole, myclobutanil, and spiroxamine) in sediments by HPLC with diode array detection. In the overall extraction process, the extraction solvents can be separated easily from the sample solution, and the experiment time was shortened. Moreover, several parameters such as the type and volume of the extraction solvent and dispersive solvent, centrifugal speed, extraction time, and salt effect that affect the extraction efficiencies of the target fungicides were studied and optimized. Under the optimized conditions, the LOD for the target analytes were in the range of 0.1–0.5 μg/g. Satisfactory recoveries of the target analytes in the sediment samples were 81.00–99.00%, with RSDs (n = 5) that ranged from 1.8 to 6.5%. Finally, the simple, sensitive, and environmentally friendly method was successfully applied to determine the target fungicides in actual sediment samples.  相似文献   

12.
A stir bar sorptive extraction method coupled with deep eutectic solvent based solidification of floating organic droplets–dispersive liquid–liquid microextraction has been used for the simultaneous derivatization and extraction of some acidic pesticides in tomato samples. In this method, initially the analytes are adsorbed on a coated stir bar from tomato juice filled in a narrow tube. After extraction, the stir bar is removed and a water–miscible deep eutectic solvent is used to elute the analytes. Afterward, a derivatization agent and a water–immiscible deep eutectic solvent (as an extraction solvent) with melting point near to room temperature are added to the obtained eluant at µL–levels and the obtained mixture is rapidly injected into deionized water. Under the optimum conditions, the introduced method indicated high enhancement (1543–3353) and enrichment (2530–2999) factors, low limits of detection (7–14 ng/L) and quantification (23–47 ng/L), good linearity (r2 ≥ 0.9982), and satisfactory repeatabilities (relative standard deviation ≤12% for intra– and inter–day precisions at a concentration of 100 ng/L of each analyte). Finally, the proposed method was applied in analysis of the analytes in tomato samples.  相似文献   

13.
Zheng C  Zhao J  Bao P  Gao J  He J 《Journal of chromatography. A》2011,1218(25):3830-3836
A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples.  相似文献   

14.
An in-situ formed polymer–based dispersive solid phase extraction in combination with solidification of floating organic droplet-based dispersive liquid–liquid microextraction was developed for the extraction of neonicotinoid pesticides from milk samples. The extracted analytes were determined using high-performance liquid chromatography–diode array detector. In this approach, after precipitating the proteins of milk using a zinc sulfate solution, the supernatant phase (containing sodium chloride) was transferred into another glass test tube, and a homogenous solution of polyvinylpyrrolidone and a suitable water-miscible organic solvent was rapidly injected into it. By this step, the polymer particles were re-produced and the analytes were extracted onto the sorbent surface. In the following step, the analytes were eluted with an appropriate organic solvent to use in the following solidification of floating organic droplet-based dispersive liquid–liquid microextraction step that was done to acquire the low limits of detection. Under the optimized conditions, satisfactory results consisting of low limits of detection (0.13–0.21 ng/ml) and quantification (0.43–0.70 ng/ml), high extraction recoveries (73%–85%), and enrichment factors (365–425), and good repeatability (relative standard deviations equal or less than 5.1% and 5.9% for intra- and inter-day precisions, respectively) were obtained.  相似文献   

15.
Two microextraction techniques – liquid phase microextraction based on solidification of a floating organic drop (LPME‐SFO) and dispersive liquid–liquid microextraction combined with a solidification of a floating organic drop (DLLME‐SFO) – are explored for benzene, toluene, ethylbenzene and o‐xylene sampling and preconcentration. The investigation covers the effects of extraction solvent type, extraction and disperser solvents' volume, and the extraction time. For both techniques 1‐undecanol containing n‐heptane as internal standard was used as an extracting solvent. For DLLME‐SFO acetone was used as a disperser solvent. The calibration curves for both techniques and for all the analytes were linear up to 10 μg/mL, correlation coefficients were in the range 0.997–0.998, enrichment factors were from 87 for benzene to 290 for o‐xylene, detection limits were from 0.31 and 0.35 μg/L for benzene to 0.15 and 0.10 μg/L for o‐xylene for LPME‐SFO and DLLME‐SFO, respectively. Repeatabilities of the results were acceptable with RSDs up to 12%. Being comparable with LPME‐SFO in the analytical characteristics, DLLME‐SFO is superior to LPME‐SFO in the extraction time. A possibility to apply the proposed techniques for volatile aromatic hydrocarbons determination in tap water and snow was demonstrated.  相似文献   

16.
In this study, a simple and accurate sample preparation method based on dispersive solid‐phase extraction and dispersive liquid‐liquid microextraction has been developed for the determination of seven novel succinate dehydrogenase inhibitor fungicides (isopyrazam, fluopyram, pydiflumetofen, boscalid, penthiopyrad, fluxapyroxad, and thifluzamide) in watermelon. The watermelon samples were extracted with acetonitrile, cleaned up by dispersive solid‐phase extraction procedure using primary secondary amine, extracted and concentrated by the dispersive liquid‐liquid microextraction procedure with 1,1,2,2‐tetrachloroethane, and then analyzed by ultra high performance liquid chromatography with tandem mass spectrometry. The main experimental factors affecting the performance of dispersive solid‐phase extraction and dispersive liquid‐liquid microextraction procedure on extraction efficiency were investigated. The proposed method had a good linearity in the range of 0.1–100 µg/kg with correlation coefficients (r) of 0.9979–0.9999. The limit of quantification of seven fungicides was 0.1 µg/kg in the method. The fortified recoveries of seven succinate dehydrogenase inhibitor fungicides at three levels ranged from 72.0 to 111.6% with relative standard deviations of 3.4–14.1% (n = 5). The proposed method was successfully used for the rapid determination of seven succinate dehydrogenase inhibitor fungicides in watermelon.  相似文献   

17.
Dispersive liquid–liquid microextraction (DLLME) based on the solidification of floating organic droplets (DLLME-SFO) combined with gas chromatography-electron-capture detection (GC–ECD) has been developed for extraction and analysis of three dinitrobenzenes. The extraction conditions including extraction solvent, disperser solvent, extraction time, salt effect and temperature were investigated and optimized systematically. The limits of detection were 0.019 μg L?1 for 1,4-dinitrobenzene, 0.079 μg L?1 for 1,3-dinitrobenzene and 0.034 μg L?1 for 1,2-dinitrobenzene. Moreover, it offered good repeatability and high recovery. This method was successfully applied to monitor DNBs in different water samples.  相似文献   

18.
A rapid, sensitive and environmentally friendly method for the analysis of 14 anilines in water samples by dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) prior to gas chromatography–mass spectrometry (GC-MS) was developed and optimized. In the proposed method, cyclohexane was used as the extraction solvent as its toxicity was much lower than that of the solvent usually used in dispersive liquid–liquid microextraction (DLLME). In the optimized conditions, the method exhibited good analytical performance. Based on a signal-to-noise ratio of 3, limits of detection for anilines were in the range of 0.07 to 0.29 μg L−1, and the linear range was 0.5–200 μg L−1 with regression coefficients (r 2) higher than 0.9977. It was efficient for qualitative and quantitative analysis of anilines in water samples. The relative standard deviations varied from 2.9 to 8.6 % depending on different compounds indicating good precision. Tap water and river water were selected for evaluating the application to real water samples. The relative recoveries of anilines for the two real samples spiked with 10 μg L−1 anilines were in the scope of 78.2–114.6 % and 77.3–115.6 %, respectively.  相似文献   

19.
《Analytical letters》2012,45(13):2075-2088
For the first time, a simple method for magnetic stirring-assisted dispersive suspended microextraction has been developed for the determination of three fungicides (azoxystrobin, diethofencarb, and pyrimethanil) in water and wine samples. The method is based on the solidification of a floating organic droplet coupled with high performance liquid chromatography. In the proposed method, the low toxicity solvent 1-dodecanol was used as the extractant. Both the extraction and phase separation process were performed with magnetic stirring. No centrifugation step was involved. After separating the two phases, the extraction solvent droplet was easily collected through solidification at lower temperature. Important parameters such as the kind and volume of organic extraction solvent, extraction and restoration speed, extraction and restoration time, and salt concentration were optimized. Under the optimal conditions, the limits of detection for the analytes varied from 0.14 to 0.26 µg L?1. The enrichment factors ranged from 125–200. The linearity ranges were 1–2000 µg L?1, yielding correlation coefficients (r) higher than 0.9990. The relative standard deviation (n = 6) at two spiked level of 0.2 µg mL?1 and 4 µg L?1 varied between 2.2% and 7.8%. Finally, the developed technique was successfully applied to determine target fungicides in real water and wine samples, where the obtained recoveries ranged from 83.8–105.3%  相似文献   

20.
A method was developed to determine 2‐mercaptobenzimidazole in water and urine samples using dispersive liquid–liquid microextraction technique coupled with ultraviolet–visible spectrophotometry. It was essential to peruse the effect of all parameters that can likely influence the performance of extraction. The influence of parameters, such as dispersive and extraction solvent volume and sample volume, on dispersive liquid–liquid microextraction was studied. The optimization was carried out by the central composite design method. The central composite design optimization method resulted in 1.10 mL dispersive solvent, 138.46 μL extraction solvent, and 4.46 mL sample volume. Under the optimal terms, the calibration curve was linear over the range of 0.003–0.18 and 0.007–0.18 μg/mL in water and urine samples, respectively. The limit of detection and quantification of the proposed approach for 2‐mercaptobenzimidazole were 0.013 and 0.044 μg/mL in water samples and 0.016 and 0.052 μg/mL in urine samples, respectively. The method was successfully applied to determination of 2‐mercaptobenzimidazole in urine and water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号