首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A mixture of Fe3S4 (greigite) and FeS2 (pyrite) is formed at 200°C on hydrothermal treatment of freshly precipitated iron sulphide. Its electron diffraction diagramm was recorded, which corresponded to an incomplete solid solution of Fe3S4 and FeS2. The surface and the interior of the spherical particles of the samples (size about 500 Å) consisted of Fe3S4 and FeS2, respectively.  相似文献   

2.
Analytical aspects of the determination of inorganic mercury (Hg) species by thermal desorption followed by atomic absorption spectrometry (AAS) detection were investigated in this work. Characteristic Hg release curves of the following species were observed: Hg0, HgCl2, HgO, HgSO4, HgS, and the Hg bound to humic acids. Particular attention was dedicated to the thermal stability and change of bond of Hg0 in the following matrices: sand, kaolinite, granite, peat, power plant ash, and soil. The bond of elemental Hg in environmental materials was described on basis of this experiment. Contaminated soil samples from two locations in the Czech Republic were investigated by thermal desorption analysis. Afterwards, the contents of volatile and plant-available Hg in the studied samples were determined. The determination of Hg0 using the thermal method was related to the results of liquid sequential extraction. The development of Hg speciation and the stability of Hg were assessed on basis of the data obtained. Thus, the analytical procedure used is a suitable tool for the study of inorganic Hg species in contaminated soils.  相似文献   

3.
The phase relations of the ternary phases at 900 and 700°C were determined by heating mixtures in the regions BaSFeSFeS2 and FeFeSBaS and identifying the products by powder X-ray diffraction. The stable ternary phases at 900°C are BaFe2S3, Ba2FeS3, Ba6Fe8S15, a solid solution BaFeS2Ba7Fe6S14, Ba2FeS4, the infinitely adaptive series Ba3Fe1+xS5, 13 ≤ x ≤ 25, and Ba9Fe16S32 which belongs to the infinitely adaptive series Ba1+xFe2S4. At 700°C the stable ternary phases are: BaFe2S3, Ba2FeS3, BaFeS2Ba7Fe6S14 (solid solution), Ba6Fe8S15, Ba2FeS4, Ba5Fe4S11, and two infinitely adaptive series: Ba3Fe1+xS5 and Ba1+xFe2S4. A stable ternary phase at 700 and 900°C with probable composition Ba2Fe4S5 was found in the FeFeSBaS section.  相似文献   

4.
The temperature dependence of the rate constant for the reactions of HO2 with OH, H, Fe2+ and Cu2+ has been determined using pulse radiolysis technique. The following rate constants, k (dm3 mol−1 s−1) at 20°C and activation energies, Ea (kJ mol−1) have been found. The reaction with OH was studied in the temperature range 20–296°C (k=7.0×109, Ea=7.4) and the reaction with H in the temperature range 5–149°C (k=8.5×109, Ea=17.5). The reaction with Fe2+ was studied in the temperature range 16–118°C (k=7.9×105, Ea=36.8) and the reaction with Cu2+ in the temperature range 17–211°C (k=1.1×108, Ea=14.9).  相似文献   

5.
The structure of dipotassium μ3‐oxido‐tris[sulfitomercurate(II)], K2[O(HgSO3)3], is characterized by segregation of the K+ cations and complex [O(HgSO3)3]2− anions into layers parallel to (010). The anion has m symmetry and is a new example of a μ3‐oxido‐trimercurate complex with a central [OHg3] core. This unit adopts the shape of a flat, almost trigonal, pyramid (mean O—Hg = 2.072 Å and mean Hg—O—Hg = 110.8°). The two independent Hg—S bonds have nearly the same length (mean Hg—S = 2.335 Å). Due to intermolecular O...Hg donor–acceptor interactions greater than 2.65 Å, the O—Hg—S fragments are slightly bent. The [KO9] coordination polyhedron of the K+ cation approaches a distorted tricapped trigonal prism with a [6+1+2] coordination.  相似文献   

6.
Structure and Properties of TlZnPO4 and TlZnAsO4 TlZnPO4 and TlZnAsO4 have polymorphic behavior with two phase transitions (TlZnPO4: 263°C, 450°C; TlZnAsO4: 562°C, 752°C) between room temperature and the congruent melting point at 1 090°C for TlZnPO4 and 930°C for TlZnAsO4. X-ray diffraction powder patterns have shown, that the compounds are isotypic and crystallize in the monoclinic system with the lattice constants a = 882.8(2), b = 546.2(1), c = 872.9(1) pm, β = 90.61(2)° for TlZnPO4, a = 895.4(1), b = 562.3(1), c = 892.8(1) pm, β = 91.08(2)° for TlZnAsO4, Z = 4, space group P21. TlZnPO4 and TlZnAsO4 belong to the „stuffed derivatives”︁ of the Icmm structure type with a [ZnXO4] network of corner linked alternating ZnO4 and XO4 tetrahedra (X = P, As) with channels of six-membered rings in the direction of the c axis. These cavities contain the Tl cations. The results of 31P MAS-NMR measurement of TlZnPO4 may be correlated with its structure. The Tl+ ionic conductivity at 300°C reaches only values of 4.4 × 10−8 Ω−1 cm−1 for TlZnPO4 and 4.5 × 10−8 Ω−1 cm−1 for TlZnAsO4.  相似文献   

7.
A new approach was used to determine the reaction products of methylcobalamin and ionic mercury: purge-and-trap gas chromatography in line with Fourier transform infrared spectroscopy (PT GC/FTIR). This technique simultaneously and specifically determines the spectrum of dimethylmercury (DMeHg) and methylmercury produced by the reaction. No interference from other known organic mercury species could be detected. The method is different from others because it does not require solvent extraction of the organomercurials from aqueous solution, but relies on immediate volatilization from the reaction vessel by addition of 100 μl of 10 mM NaBH4. The sample was purged with nitrogen for 10 min. The volatile species of mercury were trapped in a column at ?120°C, injected into the gas chromatograph and detected by FTIR. The efficiency of DMeHg and MeHg formation depended on different parameters: pH, temperature, reaction time, and the methylcobalamin/ionic mercury ratio. The initial reaction product was MeHg which was further transformed to DMeHg. The first methylation rate was two times faster than the second. MeHg formed first, reaching a maximum at higher temperatures (28°C and 37°C) and later decreasing as DMeHg formed. At lower temperatures (20°C) the rate of MeHg formation was slower, being similar to the formation rate of DMeHg. Different species of inorganic mercury such as HgSO4, Hg(NO3)2, Hg(SCN)2, HgCl2 and Hgl2 were used to study differences in methylation by methylcobalamin under standard conditions of acidity, temperature and cofactor Hg(II) ratio.  相似文献   

8.
The mobility and bioavailability of selenium is a major health and environmental issue and a main concern for geological disposal of high-level radioactive waste. Chemically and/or microbially mediated oxidation of insoluble Se-bearing particulate, such as iron selenides, to dissolved and mobile phases controls the transport and distribution of Se in the environment. The oxidation of ferroselite(FeSe2) by ferric iron was investigated in anoxic conditions. The redox reaction can be represented by: FeSe2 + 2Fe3+ = 2Se0 + 3Fe2+. Kinetic studies indicated that the reaction can be described by second-order rate law, with rate constants of 0.49±0.01, 0.85±0.02, 1.84±0.04, and 3.29±0.13 L mol-1 s-1 at pH 1.62, 1.87, 2.23, and 2.49, respectively. The positive correlation between reaction rate and pH implies that diffusion of Fe3+ oxidant to the mineral surface is the rate-determining step. The strong reactivity of FeSe2 towards Fe3+ suggests that ferric iron may play a significant role in FeSe2 oxidation process(e.g., by Se4+, O2, etc.) and Se0 should be the first reaction product. Also, it was shown that the reduction rate of Fe3+ or Se4+ by pyrite(FeS2) can be significantly increased in the presence of FeSe2, suggesting a stronger reactivity of FeSe2 compared with pyrite. The results obtained extend our knowledge about the subtle interaction between Se, pyrite and iron selenides in the environment, and give insight into the transfer of selenium from iron selenides to bio-available selenium(i.e., selenite and selenate) in the Se-rich environment.  相似文献   

9.
A sequential extraction method was developed for pyrite-bearing (FeS2) siliciclastic rocks. The focus of this study was to enhance the procedure by an improved oxidation step to completely dissolve not only organic matter but also microcrystalline pyrite. In the first experiment, four oxidation procedures were compared for pure pyrite at extraction temperatures of 25°C and 85°C with hydrogen peroxide (H2O2) as the main oxidant. It was found that pyrite dissolution was most effective by using a mixture of H2O2, ammonium acetate (NH4OAc) and nitric acid (HNO3) at 25°C. This procedure dissolved >90% pyrite, and detected >75% using solute iron measurements. The difference between these two results was explained by reprecipitation of secondary iron minerals. The procedure worked best at 25°C, since solvent evaporation at 85°C amplified iron oversaturation and precipitation. For the pyrite-bearing siliciclastic rocks, two sequential extraction schemes were compared to optimise solid–solvent ratio, extraction step order and type of solvent. Eventually, the most effective step order identified for siliciclastic rocks containing pyrite and little organic matter was to first (1) remove the exchangeable fraction, followed by (2) dissolution with acid and afterwards (3) with a reducing agent. The (4) oxidation step was performed last.  相似文献   

10.
The structures and energies of the electronic ground states of the FeS0/?, FeS20/?, Fe2S20/?, Fe3S40/?, and Fe4S40/? neutral and anionic clusters have been computed systematically with nine computational methods in combination with seven basis sets. The computed adiabatic electronic affinities (AEA) have been compared with available experimental data. Most reasonable agreements between theory and experiment have been found for both hybrid B3LYP and B3PW91 functionals in conjugation with 6‐311+G* and QZVP basis sets. Detailed comparisons between the available experimental and computed AEA data at the B3LYP/6‐311+G* level identified the electronic ground state of 5Δ for FeS, 4Δ for FeS?, 5B2 for FeS2, 6A1 for FeS2?, 1A1 for Fe2S2, 8A′ for Fe2S2?, 5A′′ for Fe3S4, 6A′′ for Fe3S4?, 1A1 for Fe4S4, and 1A2 for Fe4S4?. In addition, Fe2S2, Fe3S4, Fe3S4?, Fe4S4, and Fe4S4? are antiferromagnetic at the B3LYP/6‐311+G* level. The magnetic properties are discussed on the basis of natural bond orbital analysis.  相似文献   

11.
Several solid phases with the general formula xM[XHgSO3yHgX2·zMX·nH2O were obtained from aqueous solutions during phase formation studies in the systems M2SO3/HgX2 (M = NH4, K; X = Cl, Br). All phases were structurally characterized on the basis of single crystal X‐ray diffraction data and adopt new structure types. Compounds with x, y, z = 1 and n = 0 are isostructural (structure type I ) and crystallise with two formula units in space group P21/m and lattice parameters of a ≈ 9.7, b ≈ 6.2, c ≈ 10.4Å, β ≈ 111°. Compounds with x, y = 1 and z, n = 0 (structure type II ) crystallize in space group Cmc21 with four formula units and lattice parameters of a ≈ 5.9, b ≈ 22.0, c ≈ 6.9Å. The structures with x = 2, y, z = 1 and n = 0 are likewise isostructural (stucture type III ) and consist of four formula units in space group Pnma with lattice parameters of a ≈ 22.2, b ≈ 6.1, c ≈ 12.4Å. K[HgSO3Cl]·KCl·H2O is the only representative where x = 1, y = 0, z = 1 and n = 1 (structure type IV ). It is triclinic (space group ) with four formula units and lattice parameters of a = 6.1571(8), b = 7.1342(9), c = 10.6491(14) Å, α = 76.889(2), β = 88.364(2), γ = 69.758(2)°. Characteristic for all structures types is the segregation of the M+ cations and the anions and/or HgX2 molecules into layers. The [XHgSO3] anions are present in all structures and have m symmetry, except for K[HgSO3Cl]·KCl·H2O with 1 symmetry (but very close to m symmetry). The different [XHgSO3] units exhibit very similar Hg‐S distances (average 2.372Å) and are more or less bent with ∠(X‐Hg‐S) angles ranging from 159.7 to 173.7°. The molecular HgX2 entities present in structure types I ‐ III deviate only slightly from linearity with ∠(X‐Hg‐X) angles ranging from 174 to 179°. The structures are stabilised by interaction of the K+ or NH4+ cations that are located between the anionic layers or in the vacancies of the framework, by K‐O contacts or, in case of ammonium compounds, by medium to weak hydrogen bonding interactions of the type N‐H···O.  相似文献   

12.
Three new mercury rare earth sulfides have been synthesized by heating a mixture of the sesquisulfide of rare earth and cinnabar at 800°c for 25 h in an evacuated (10?4 Torr) sealed quartz tube. Their general formula, Ln4HgS7 (Ln = Tm, Yb and Lu), was determined by chemical analysis. These sulfides are tetragonal. Lattice parameters for Ln = Tm, Yb and Lu are: a = 11.09(2), 11.07(3) and 11.03(2)Å, c = 8.38(5), 8.35(2) and 8.33(2)Å respectively. These compounds are stable toward air and moisture at room temperature, but are oxidized slowly at elevated temperature. Thermogravimetric curves show that Tm4HgS7, Yb4HgS, and Lu4HgS7 are decomposed and oxidized at 500°, 650° and 450°C respectively.  相似文献   

13.
The low temperature syntheses of AuTe2 and Ag2Te starting from the elements were investigated in the ionic liquids (ILs) [BMIm]X and [P66614]Z ([BMIm]+=1-butyl-3-methylimidazolium; X = Cl, [HSO4], [P66614]+ = trihexyltetradecylphosphonium; Z = Cl, Br, dicyanamide [DCA], bis(trifluoromethylsulfonyl)imide [NTf2], decanoate [dec], acetate [OAc], bis(2,4,4-trimethylpentyl)phosphinate [BTMP]). Powder X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy revealed that [P66614]Cl is the most promising candidate for the single phase synthesis of AuTe2 at 200 °C. Ag2Te was obtained using the same ILs by reducing the temperature in the flask to 60 °C. Even at room temperature, quantitative yield was achieved by using either 2 mol % of [P66614]Cl in dichloromethane or a planetary ball mill. Diffusion experiments, 31P and 125Te-NMR, and mass spectroscopy revealed one of the reaction mechanisms at 60 °C. Catalytic amounts of alkylphosphanes in commercial [P66614]Cl activate tellurium and form soluble phosphane tellurides, which react on the metal surface to solid telluride and the initial phosphane. In addition, a convenient method for the purification of [P66614]Cl was developed.  相似文献   

14.
While most electrochemical uric acid (UA) sensors are developed on the conventional electrodes and involve either multiple steps based synthesis routes and/or complicated fabrication processes, this paper is the first demonstration of direct growth of pyrite FeS2 on pencil‐graphite electrode (PGE) for non‐enzymatic UA sensing. FESEM images of the pyrite FeS2‐PGE reveal mesoporous microspherical structure of pyrite FeS2 along with graphite flakes of PGE and EDX, Raman spectroscopic data validate growing of pyrite FeS2 on PGE. The pyrite FeS2‐PGE sensor exhibited detection limit of 6.7 μM, excellent linearity, reproducibility, selectivity over glucose, urea, ascorbic acid with the sensitivity of 370 μA mM?1 cm?2 in the range of 10–725 μM of UA. These improved analytical performances can be attributed to high conductivity of the pyrite FeS2, larger electro‐active surface area of the mesoporous microspherical pyrite FeS2 grown on PGE (than only PGE) and abundance in defect sites originating from both the pyrite FeS2 as well as functional groups of pencil graphite. Furthermore, the sensor was validated against UA in urine sample and the result supports well with the UA concentration achieved from colorimetric technique. Development of this low cost, non‐enzymatic, sensitive and highly selective pyrite FeS2‐PGE bases UA sensor is a significant step in the development of practically viable sensors for point‐of‐care applications in clinical and pharmaceutical analyses.  相似文献   

15.
The thermal decomposition of Prussian blue (iron(III) hexacyanoferrate) under inert atmosphere of argon was monitored by thermal analysis from room temperature up to 1000?°C. X-ray powder diffraction and 57Fe M?ssbauer spectroscopy were the techniques used for phase identification before and after sample heating. The decomposition reaction is based on a successive release of cyanide groups from the Prussian blue structure. Three principal stages were observed including dehydration, change of crystal structure of Prussian blue, and its decomposition. At 400?°C, a monoclinic Prussian blue analogue was identified, while at higher temperatures the formation of various polymorphs of iron carbides was observed, including an orthorhombic Fe2C. Increase in the temperature above 700?°C induced decomposition of primarily formed Fe7C3 and Fe2C iron carbides into cementite, metallic iron, and graphite. The overall decomposition reaction can be expressed as follows: Fe4[Fe(CN)6]3·4H2O????4Fe?+?Fe3C?+?7C?+?5(CN)2?+?4N2?+?4H2O.  相似文献   

16.
The crystal structures of (NH4)[HgSO3Cl] ( 1 ) and of (NH4)2[Hg(SO3)2] ( 2 ) were determined from single crystal diffractometer data sets. 1 : 22 °C, Pnma, Z = 4, a = 15.430(3), b = 5.525(1), c = 6.679(1) Å, R(F) = 0.0256, Rw(F2) = 0.0642 (all 1056 unique reflections). 2 : ?108 °C, P212121, Z = 4, a = 6.2240(4), b = 9.3908(6), c = 13.6110(8) Å, R(F) = 0.0179, Rw(F2) = 0.0493 (all 2699 unique reflections). The structure of 1 contains bent Cl‐Hg‐SO3 entities (site symmetry m; d(Hg‐Cl) = 2.3403(13) Å, d(Hg‐S) = 2.3636(12) Å, ∠(Cl‐Hg‐S) = 164.51(5)°, d(S‐O) 2×1.458(3) Å, 1.468(4) Å, = 1.461Å) linked to undulated ribbons parallel to the b ‐axis by intermolecular secondary bonds SO···Hg (d(O···Hg) = 2×2.595(3) Å). These ribbons in turn aggregate to layers around the bc ‐plane. The layers are stacked along the a ‐axis with interlayer distances of a /2. The structure of 2 is made up of O3S‐Hg‐SO3 moieties (d(Hg‐S) = 2.3935(7), 2.3935(8) Å; ∠(Hg‐S‐Hg) = 174.41(3)°; = 1.474Å), that are linked to ribbons parallel to the a axis by coordination of Hg to three remote O atoms (2.801(4) < d(Hg‐O) < 2.844(3) Å). Adjacent ribbons are joined together by an additional Hg‐O contact of 2.733(3) Å, leading to a three‐dimensional anionic framework. Both crystal structures are stabilised by disordered NH4+ cations, placed between the anionic layers or in the vacancies of the framework, via moderate hydrogen bonding interactions N‐H···O with donor‐acceptor distances ranging from 2.8 to 3.2Å. 1 and 2 were further characterised by thermal analysis (TG, DSC). They start to decompose at temperatures above 130 °C.  相似文献   

17.
Sediment has been considered to be one of the most important mercury methylation sites, but recent studies have demonstrated a new site that is relevant, i.e. the roots of floating aquatic macrophytes, where high methylation is observed. The effects of temperature, pH and electric conductivity on net mercury methylation were studied in the roots of the water‐hyacinth Eichhornia crassipes of a freshwater coastal lagoon (Lagoinha, RJ, Brazil). Root samples were incubated, over three days, with 203HgCl2 addition, at different temperatures (10–90 °C), pH values (3–8) and different electrolytic solutions (KClO4, KCl and CaCl2, at 1, 5, 10, 25 and 50 mM , ranging between 18 and 760 µS cm−1). 203Hg‐labeled methylmercury (Me203Hg) was extracted in toluene, after acid leaching, and measured by β‐counting. Up to 35% of mercury added was converted to MeHg Methylation increased from 10 to 35 °C, and decreased thereafter. The process was completely inhibited at 90 °C. At pH values of 6 and 7 methylation was stimulated and a significant decrease was verified at pH 8. Increasing KClO4 concentrations led to a significant decrease in the methylation rates, while for KCl and CaCl2 solutions only a slight decrease was observed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
This work demonstrated for the first time that myoglobin cross‐linked in polylysine films is electrochemically active at 6 °C. At 6 °C, these protein films exhibited reversible reduction/oxidation peaks which are characteristic of FeIII/FeII redox couple. The estimated current function densities (J=1.6×10?4 C/V cm2), surface concentrations (ΓT=0.10 nmol/cm2) and standard electron transfer constant (ks=13.86 s?1) at 6 °C for the data taken at a scan rate of 0.1 V/s were similar to those which were obtained at 10, 15 and 23 °C. Basically, this study shows a possible electrocatalytic application of these myoglobin/polylysine films, for example in low temperature sensing applications.  相似文献   

19.
A fundamental understanding of the nature of nuclearity effects is important for the rational design of superior sub-nanocatalysts with low nuclearity, but remains a long-standing challenge. Using atomic layer deposition, we precisely synthesized Fe sub-nanocatalysts with tunable nuclearity (Fe1–Fe4) anchored on N,O-co-doped carbon nanorods (NOC). The electronic properties and spin configuration of the Fe sub-nanocatalysts were nuclearity dependent and dominated the H2O2 activation modes and adsorption strength of active O species on Fe sites toward C−H oxidation. The Fe1-NOC single atom catalyst exhibits state-of-the-art activity for benzene oxidation to phenol, which is ascribed to its unique coordination environment (Fe1N2O3) and medium spin state (t2g4eg1); turnover frequencies of 407 h−1 at 25 °C and 1869 h−1 at 60 °C were obtained, which is 3.4, 5.7, and 13.6 times higher than those of Fe dimer, trimer, and tetramer catalysts, respectively.  相似文献   

20.
Generating FeIV=O on single-atom catalysts by Fenton-like reaction has been established for water treatment; however, the FeIV=O generation pathway and oxidation behavior remain obscure. Employing an Fe−N−C catalyst with a typical Fe−N4 moiety to activate peroxymonosulfate (PMS), we demonstrate that generating FeIV=O is mediated by an Fe−N−C−PMS* complex—a well-recognized nonradical species for induction of electron-transfer oxidation—and we determined that adjacent Fe sites with a specific Fe1−Fe1 distance are required. After the Fe atoms with an Fe1-Fe1 distance <4 Å are PMS-saturated, Fe−N−C−PMS* formed on Fe sites with an Fe1-Fe1 distance of 4–5 Å can coordinate with the adjacent FeII−N4, forming an inter-complex with enhanced charge transfer to produce FeIV=O. FeIV=O enables the Fenton-like system to efficiently oxidize various pollutants in a substrate-specific, pH-tolerant, and sustainable manner, where its prominent contribution manifests for pollutants with higher one-electron oxidation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号