首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Electroanalysis》2005,17(7):556-570
Composites of inherently conductive polypyrrole (PPy) within highly hydrophilic poly(2‐hydroxyethyl methacrylate)‐based hydrogels (p(HEMA)) have been fabricated and their electrochemical properties investigated. The electrochemical characteristics observed by cyclic voltammetry suggest less facile reduction of PPy within the composite hydrogel compared to electropolymerized PPy, as shown by the shift in the reduction peak potential from ?472 mV for electropolymerized polypyrrole to ?636 mV for the electroconductive composite gel. The network impedance magnitude for the electroconductive hydrogel remains quite low, ca. 100 Ω, even upon approach to DC, over all frequencies and at all offset potentials suggesting retained electronic (bipolaronic) conductivity within the composite. In contrast, sustained application of +0.7 V (vs. Ag/AgCl, 3 M Cl?) for typically 100 min. (conditioning) to reduce the background amperometric current to <1.0 μA, resulted in complete loss of electroactivity. Nyquist plots suggest that sustained application of such a modest potential to the composite hydrogel results in impedance characteristics that resembles p(HEMA) without evidence of the conducting polymer component. PPy composite gels supported a larger ferrocene monocarboxylate diffusivity (Dappt=7.97×10?5 cm2 s?1) compared to electropolymerized PPy (Dappt=5.56×10?5 cm2 s?1), however a marked reduction in diffusivity (Dappt=1.01×10?5 cm2 s?1) was observed with the conditioned hydrogel composite. Cyclic voltammograms in buffer containing H2O2 showed an absence of redox peaks for electrodes coated with PPy‐containing membranes, suggesting possible chemical oxidation of polypyrrole by the oxidant  相似文献   

2.
《Electroanalysis》2003,15(12):1043-1053
The redox chemistry of the stable tetracoordinated 16 valence electron d8‐[Ir+I(troppPh)2]+(PF6)? and pentacoordinated 18 valence d8‐[Ir+I(troppPh)2Cl] complexes was investigated by cyclic voltammetry (troppPh=dibenzotropylidenyl phosphine). The experiments were performed using a platinum microelectrode varying scan rates (100 mV/s–10 V/s) and temperatures (? 40 to 20 °C) in tetrahydrofuran, THF, or acetonitrile, ACN, as solvents. In THF, the overall two‐electron reduction of the 16 valence electron d8‐[Ir+I(troppPh)2]+(PF6)? proceeds in two well separated slow heterogeneous electron transfer steps according to: d8‐[Ir+I (troppPh)2]++e?→d9‐[Ir0(troppPh)2]+e?→d10‐[Ir?I(troppPh)2]?, [ks1=2.2×10?3 cm/s for d8‐Ir+I/d9‐Ir0 and ks2=2.0×10?3 cm/s for d9‐Ir0/d10‐Ir?I]. In ACN, the two redox waves merge into one “two‐electron” wave [ks1,2=7.76×10?4 cm/s for d8‐Ir+I/d9‐Ir0 and d9‐Ir0/d10‐Ir?I] most likely because the neutral [Ir0(troppPh)2] complex is destabilized. At low temperatures (ca. ? 40 °C) and at high scan rates (ca. 10 V/s), the two‐electon redox process is kinetically resolved. In equilibrium with the tetracoordianted complex [Ir+I(troppPh)2]+ are the pentacoordinated 18 valence [Ir+I(troppPh)2L]+ complexes (L=THF, ACN, Cl?) and their electrochemical behavior was also investigated. They are irreversibly reduced at rather high negative potentials (? 1.8 to ? 2.4 V) according to an ECE mechanism 1) [Ir+I(troppPh)2(L)]+e?→[Ir0(troppPh)2(L)]; 2) [Ir0(troppPh)2(L)]→[Ir(troppPh)2]+L, iii) [Ir0(troppPh)2]+e?→[Ir?I(troppPh)2]?. Since all electroactive species were isolated and structurally characterized, our measurements allow for the first time a detailed insight into some fundamental aspects of the coordination chemistry of iridium complexes in unusually low formal oxidation states.  相似文献   

3.
《Electroanalysis》2005,17(22):2068-2073
A new cathodic scheme for hydrogen peroxide (H2O2) measurement by Fe3O4‐based chemical sensor was described. The unique characteristic of electrocatalytic property was firstly investigated by voltammetry. And then the amperometric response of H2O2 was measured at ?0.2 V (vs. Ag/AgCl) by Fe3O4 modified glassy carbon rotating disk electrode. The kinetic parameter was also calculated from Koutecky‐Levich plot, and the value was 6.4×10?4 cm s?1 in pH 3 citrate buffer. In order to benefit the possible biomedical applications, Fe3O4/chitosan modified electrode was also investigated in this experiment. There were several characteristic enhancements by the coated chitosan thin film for H2O2 sensor. The calibration curves were found to be linear up to 4.0 and 5.0 mM (r=0.999) in pH 3 and 7 with the detection limits of 7.6 and 7.4 μM L?1 (S/N=3). The stability was evaluated by the results of half‐life time (t50%) for 9 months at room temperature and 24 months at 4 °C.  相似文献   

4.
Voltammetric behavior of Irinotecan (CPT‐11) was studied in a phosphate buffer (0.002 mol·L?1, pH 7.5) solution at the hanging mercury drop electrode (HMDE) using cyclic voltammetry (CV). CPT‐11 showed two irreversible cathodic peaks at ?1.01 V and ?1.09 V which involved two electrons and two protons in each reduction step. In addition, the interaction of Irinotecan with double‐stranded calf thymus DNA (ds‐DNA) was studied by CV at the HMDE employing an irreversible electrochemical equation. As a result of the reaction with ds‐DNA, the reduction peaks related to CPT‐11 were shifted in a negative direction and the peak currents were decreased. The diffusion coefficients of CPT‐11 in the absence (Df) and presence (Db) of ds‐DNA were calculated as 2.8×10?5 cm2·s?1 and 1.6×10?5 cm2·s?1 respectively. The binding constant (K=1.0×104 L·mol?1), and binding site size (s=0.60) of CPT‐11 interacting with ds‐DNA were obtained simultaneously by non‐linear fit analysis. The results demonstrate that the main interaction mode of CPT‐11 with ds‐DNA is electrostatic.  相似文献   

5.
This study describes a fast and simple methodology for the preparation of Cerium (III) Hexacyanoferrate (II) (CeHCF) nanoparticles (NPs). The NPs were characterized by fourier transform infrared (FTIR), x‐ray diffraction (XRD), scanning electron microscopy (SEM) and cyclic voltammetry (CV). The CeHCF cyclic voltammogram indicate a well‐defined redox pair assigned as Fe2+/Fe3+ in the presence of cerium (III), with a formal potential of Eθ′=0.29 V (v=100 mV s?1, KNO3; 1.0 mol/L, pH 7.0). The carbon paste electrode modified with CeHCF (CeHCF‐CPE) was applied to the catalytic electrooxidation of dopamine applying Differential Pulse Voltammetry (DPV). DPV showed linear response at two concentration ranges, from 9.0×10?7 to 8.0×10?6 and 9.0×10?6 to 1.0×10?4 mol/L, with an LOD of 1.9×10?7 and 1.0×10?5 mol/L, respectively. The CeHCF‐CPE exhibited selectivity against substances commonly found in biological samples, with redox potentials close to that of dopamine, such as urea and ascorbic acid (AA). Subsequently the CeHCF‐CPE was successfully applied to the detection of dopamine in simulated urine samples, with recovery percentages ranging between 99 and 103%.  相似文献   

6.
Poly(hydroxyethylmethacrylate)‐based hydrogel membranes were applied to microfabricated, microdisk electrode arrays (MDEAs) of 50 μm (5184 disks), 100 μm (1296 disks) and 250 μm (207 disks) (d/r=4; A= 0.1 cm2) and studied by cyclic voltammetry (CV) in 1.0 mM ferrocene monocarboxylic acid (FcCO2H). The membrane produced an order of magnitude decrease in current densities and a shift to quasi reversibility due to a decrease in the Dappt of FcCO2H, from 4.51×10?6 cm2 s?1 to 1.42×10?8 cm2 s?1, (2.18×10?8 cm2 s?1 from release experiments). The MDEA050 (comprising 50 μm disks) maintained its enhanced current density attributes confirming its value as an effective electrode for biosensors. Finite element modeling (FEM) simulations successfully replicated the voltammograms of the MDEAs.  相似文献   

7.
《Electroanalysis》2002,14(23):1648-1653
An electrochemical equation suitable for examining the interaction of irreversible redox compounds with DNA is established. According to the equation, diffusion coefficients of both free and binding compounds (Df , Db), binding constant (K) and binding site size (s) of compounds with DNA could be obtained simultaneously by nonlinear fit analysis of electrochemical data. Bis‐benzimidazole derivative (Hoechst 33258), as an irreversible redox compound, was investigated for its electrochemical behavior and the interaction with natural fish sperm DNA (fsDNA) using cyclic voltammetry, chronocoulometry, bulk electrolysis and scanning electrochemical microscope technique. A nonlinear fit analysis of the experimental data yielded: Df=8.3×10?5 cm2 s?1, Db=6.0×10?6 cm2 s?1, K=2.1×108 cm3 mol?1, s=3.9. The overall results suggest that Hoechst 33258 binds tightly to the minor groove of fsDNA and covers four base pairs.  相似文献   

8.
《Electroanalysis》2004,16(11):949-954
The preparation and the electrochemical study of Disperse Blue 1‐chemically modified electrodes (DB1‐CME), as well as their efficiency for the electrocatalytic oxidation of NADH is described. The proposed mediator was immobilized by physical adsorption onto graphite electrodes. The electrochemical behavior of DB1‐CME was studied with cyclic voltammetry. The electrochemical redox reaction of DB1 was found to be reversible, revealing two well‐shaped pair of peaks with formal potentials 152 and ?42 mV, respectively, (vs. Ag/AgCl/3M KCl) at pH 6.5. The current Ip has a linear relationship with the scan rate up to 800 mV s?1, which is indicative for a fast electron transfer kinetics. The dissociation constants of the immobilized DB1 redox couple were calculated pK1=4 and pK2=5. The electrochemical rate constants of the immobilized DB1 were calculated k1°=18 s?1 and k2°=23 s?1 (Γ=2.36 nmol cm?2). The modified electrodes were mounted in a flow injection manifold, poised at +150 mV (vs. Ag/AgCl/3M KCl) and a catalytic current due to the oxidation of NADH was measured. The reproducibility was 1.4% RSD (n=11 for 30 μM NADH) The behavior of the sensor towards different reducing compounds was investigated. The sensor exhibited good operational and storage stability.  相似文献   

9.
Films of linear and branched oligomer wires of Fe(tpy)2 (tpy=2,2′:6′,2′′‐terpyridine) were constructed on a gold‐electrode surface by the interfacial stepwise coordination method, in which a surface‐anchoring ligand, (tpy? C6H4N?NC6H4? S)2 ( 1 ), two bridging ligands, 1,4‐(tpy)2C6H4 ( 3 ) and 1,3,5‐(C?C? tpy)3C6H3 ( 4 ), and metal ions were used. The quantitative complexation of the ligands and FeII ions was monitored by electrochemical measurements in up to eight complexation cycles for linear oligomers of 3 and in up to four cycles for branched oligomers of 4 . STM observation of branched oligomers at low surface coverage showed an even distribution of nanodots of uniform size and shape, which suggests the quantitative formation of dendritic structures. The electron‐transport mechanism and kinetics for the redox reaction of the films of linear and branched oligomer wires were analyzed by potential‐step chronoamperometry (PSCA). The unique current‐versus‐time behavior observed under all conditions indicates that electron conduction occurs not by diffusional motion but by successive electron hopping between neighboring redox sites within a molecular wire. Redox conduction in a single molecular wire in a redox‐polymer film has not been reported previously. The analysis provided the rate constant for electron transfer between the electrode and the nearest redox‐complex moiety, k1 (s?1), as well as that for intrawire electron transfer between neighboring redox‐complex moieties, k2 (cm2 mol?1 s?1). The strong effect of the electrolyte concentration on both k1 and k2 indicates that the counterion motion limits the electron‐hopping rate at lower electrolyte concentrations. Analysis of the dependence of k1 and k2 on the potential gave intrinsic kinetic parameters without overpotential effects: k10=110 s?1, k20=2.6×1012 cm2 mol?1 s?1 for [n Fe 3 ], and k10=100 s?1, k20=4.1×1011 cm2 mol?1 s?1 for [n Fe 4 ] (n=number of complexation cycles).  相似文献   

10.
The thermal decomposition of cyanogen azide (NCN3) and the subsequent collision‐induced intersystem crossing (CIISC) process of cyanonitrene (NCN) have been investigated by monitoring excited electronic state 1NCN and ground state 3NCN radicals. NCN was generated by the pyrolysis of NCN3 behind shock waves and by the photolysis of NCN3 at room temperature. Falloff rate constants of the thermal unimolecular decomposition of NCN3 in argon have been extracted from 1NCN concentration–time profiles in the temperature range 617 K <T< 927 K and at two different total densities: k(ρ ≈ 3 × 10?6 mol/cm3)/s?1=4.9 × 109 × exp (?71±14 kJ mol?1/RT) (± 30%); k(ρ ≈ 6 × 10?6 mol/cm3)/s?1=7.5 × 109 × exp (‐71±14 kJ mol?1/RT) (± 30%). In addition, high‐temperature 1NCN absorption cross sections have been determined in the temperature range 618 K <T< 1231 K and can be expressed by σ /(cm2/mol)= 1.0 × 108 ?6.3 × 104 K?1 × T (± 50%). Rate constants for the CIISC process have been measured by monitoring 3NCN in the temperature range 701 K <T< 1256 K resulting in kCIISC (ρ ≈ 1.8 ×10?6 mol/cm3)/ s?1=2.6 × 106× exp (‐36±10 kJ mol?1/RT) (± 20%), kCIISC (ρ ≈ 3.5×10?6 mol/cm3)/ s?1 = 2.0 × 106 × exp (?31±10 kJ mol?1/RT) (± 20%), kCIISC (ρ ≈ 7.0×10?6 mol/cm3)/ s?1=1.4 × 106 × exp (?25±10 kJ mol?1/RT) (± 20%). These values are in good agreement with CIISC rate constants extracted from corresponding 1NCN measurements. The observed nonlinear pressure dependences reveal a pressure saturation effect of the CIISC process. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 30–40, 2013  相似文献   

11.
Direct electron transfer of myoglobin (Mb) was achieved by its direct immobilization on carbon ionic liquid electrode (CILE) with a conductive hydrophobic ionic liquid, 1‐butyl pyridinium hexaflourophosphate ([BuPy][PF6]) as binder for the first time. A pair of well‐defined, quasi‐reversible redox peaks was observed for Mb/CILE resulting from Mb redox of heme Fe(III)/Fe(II) redox couple in 0.1 M phosphate buffer solution (pH 7.0) with oxidation potential of ?0.277 V, reduction potential of ?0.388 V, the formal potential E°′ (E°′=(Epa+Epc)/2) at ?0.332 V and the peak‐to‐peak potential separation of 0.111 V at 0.5 V/s. The average surface coverage of the electroactive Mb immobilized on the electrode surface was calculated as 1.06±0.03×10?9 mol cm?2. Mb retained its bioactivity on modified electrode and showed excellent electrocatalytic activity towards the reduction of H2O2. The cathodic peak current of Mb was linear to H2O2 concentration in the range from 6.0 μM to 160 μM with a detection limit of 2.0 μM (S/N=3). The apparent Michaelis–Menten constant (K and the electron transfer rate constant (ks) were estimated to be 140±1 μM and 2.8±0.1 s?1, respectively. The biosensor achieved the direct electrochemistry of Mb on CILE without the help of any supporting film or any electron mediator.  相似文献   

12.
For well over 20 years, μ‐oxo‐diiron corroles, first reported by Vogel and co‐workers in the form of μ‐oxo‐bis[(octaethylcorrolato)iron] (Mössbauer δ 0.02 mm s?1, ΔEQ 2.35 mm s?1), have been thought of as comprising a pair antiferromagnetically coupled low‐spin FeIV centers. The remarkable stability of these complexes, which can be handled at room temperature and crystallographically analyzed, present a sharp contrast to the fleeting nature of enzymatic, iron(IV)‐oxo intermediates. An array of experimental and theoretical methods have now shown that the iron centers in these complexes are not FeIV but intermediate‐spin FeIII coupled to a corrole.2?. The intramolecular spin couplings in {Fe[TPC]}2(μ‐O) were analyzed via DFT(B3LYP) calculations in terms of the Heisenberg–Dirac–van Vleck spin Hamiltonian H=JFe–corrole(SFe?Scorrole)+JFe–Fe′(SFe?SFe′)+JFe′–corrole(SFe′?Scorrole′), which yielded JFe–corrole=JFe′–corrole′=0.355 eV (2860 cm?1) and JFe–Fe′=0.068 eV (548 cm?1). The unexpected stability of μ‐oxo‐diiron corroles thus appears to be attributable to charge delocalization via ligand noninnocence.  相似文献   

13.
Kinetics of the free radical polymerization of styrene at 110 °C has been investigated in the presence of C‐phenyl‐Ntert‐butylnitrone (PBN) and 2,2′‐azobis(isobutyronitrile) (AIBN) after prereaction in toluene at 85 °C. The effect of the prereaction time and the PBN/AIBN molar ratio on the in situ formation of nitroxides and alkoxyamines (at 85 °C), and ultimately on the control of the styrene polymerization at 110 °C, has been investigated. As a rule, the styrene radical polymerization is controlled, and the mechanism is one of the classical nitroxide‐mediated polymerization. Only one type of nitroxide (low‐molecular‐mass nitroxide) is formed whatever the prereaction conditions at 85 °C, and the equilibrium constant (K) between active and dormant species is 8.7 × 10?10 mol L?1 at 110 °C. At this temperature, the dissociation rate constant (kd) is 3.7 × 10?3 s?1, the recombination rate constant (kc) is 4.3 × 106 L mol?1 s?1, whereas the activation energy (Ea,diss.), for the dissociation of the alkoxyamine at the chain‐end is ~125 kJ mol?1. Importantly, the propagation rate at 110 °C, which does not change significantly with the prereaction time and the PBN/AIBN molar ratio at 85 °C, is higher than that for the thermal polymerization at 110 °C. This propagation rate directly depends on the equilibrium constant K and on the alkoxyamine and nitroxide concentrations, as well. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1219–1235, 2007  相似文献   

14.
A new compound,[RbHTNR]_∞[HTNR:C_6H(NO_2)_3(OH)O],was synthesized by the reaction of rubidium ni-trate and styphnic acid.The molecular structure was characterized using X-ray diffraction analysis,elementalanalysis and FTIR spectroscopy.The crystalline is monoclinic with space group P2_1/n and the empirical formulaC_6H_2N_3O_8Rb.The unit cell parameters are:a=0.4525 nm,b=1.0777 nm,c=1.9834 nm,β=90.47(2)°,V=0.96725 nm~3,Z=4,D_c=2.263 g/cm~3,Mr=329.58,F(000)=640,μ(Mo Kα)=5.165 mm~(-1).The thermal decompo-sition mechanism of the complex was studied by differential scanning calorimetry(DSC),thermogravimetry-derivative thermogravimetry(TG-DTG)and FTIR techniques.At the linear rate of 10 ℃/min,the thermaldecomposition of the complex showed three mass reducing processes between 60 and 500 ℃,and finally evolvedRbCN and some gaseous products.  相似文献   

15.
A new electrochemical method was proposed for the determination of adenosine‐5′‐triphosphate (ATP) based on the electrooxidation at a molecular wire (MW) modified carbon paste electrode (CPE), which was fabricated with diphenylacetylene (DPA) as the binder. A single well‐defined irreversible oxidation peak of ATP appeared on MW‐CPE with adsorption‐controlled process and enhanced electrochemical response in a pH 3.0 Britton‐Robinson buffer solution, which was due to the presence of high conductive DPA in the electrode. The electrochemical parameters of ATP were calculated with the electron transfer coefficient (α) as 0.54, the electron transfer number (n) as 1.9, the apparent heterogeneous electron transfer rate constant (ks) as 2.67 × 10?5 s?1 and the surface coverage (ΓT) as 4.15 × 10?10 mol cm?2. Under the selected conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10?7 mol L?1 to 2.0 × 10?3 mol L?1 with the detection limit as 1.28 × 10?8 mol L?1 (3σ) by sensitive differential pulse voltammetry. The proposed method showed good selectivity without the interferences of coexisting substances and was successful applied to the ATP injection samples detection.  相似文献   

16.
《Electroanalysis》2006,18(12):1193-1201
A chemically modified carbon paste electrode with 2,7‐bis(ferrocenyl ethyl)fluoren‐9‐one (2,7‐BFEFMCPE) was employed to study the electrocatalytic oxidation of ascorbic acid in aqueous solution using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The diffusion coefficient (D=1.89×10?5 cm2 s?1), and the kinetic parameter such as the electron transfer coefficient, α (=0.42) of ascorbic acid oxidation at the surface of 2,7‐BFEFMCPE was determined using electrochemical approaches. It has been found that under an optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such an electrode occurs at a potential about 300 mV less positive than that of an unmodified carbon paste electrode. The catalytic oxidation peak currents show a linear dependence on the ascorbic acid concentration and linear analytical curves were obtained in the ranges of 8.0×10?5 M–2.0×10?3 M and 3.1×10?5 M–3.3×10?3 M of ascorbic acid with correlation coefficients of 0.9980 and 0.9976 in cyclic voltammetry and differential pulse voltammetry, respectively. The detection limits (2δ) were determined to be 2.9×10?5 M and 9.0×10?6 M with cyclic voltammetry and differential pulse voltammetry, respectively. This method was also examined for determination of ascorbic acid in pharmaceutical preparations.  相似文献   

17.
Aerogels are fascinating materials that can be used for a wide range of applications, one of which is electrocatalysis of the important oxygen reduction reaction. In their inorganic form, aerogels can have ultrahigh catalytic site density, high surface area, and tunable physical properties and chemical structures—important features in heterogeneous catalysis. Herein, we report on the synthesis and electrocatalytic properties of an iron–porphyrin aerogel. 5,10,15,20‐(Tetra‐4‐aminophenyl)porphyrin (H2TAPP) and FeII were used as building blocks of the aerogel, which was later heat‐treated at 600 °C to enhance electronic conductivity and catalytic activity, while preserving its macrostructure. The resulting material has a very high concentration of atomically dispersed catalytic sites (9.7×1020 sites g?1) capable of catalyzing the oxygen reduction reaction in alkaline solution (Eonset=0.92 V vs. RHE, TOF=0.25 e? site?1 s?1 at 0.80 V vs. RHE).  相似文献   

18.
The electrochemical behaviour of hydrazine at a 1‐benzyl‐4‐ferrocenyl‐1H‐[1,2,3]‐triazole‐triazole/carbon nanotube modified glassy carbon electrode has been studied. The modified electrode shows an excellent electrocatalytic activity for the oxidation of hydrazine and accelerates electron transfer rate. The electrocatalytic current increases linearly with hydrazine concentration in the range 0.5–700.0 μm and the detection limit for hydrazine was 33.0 ± 2.0 nm . The diffusion coefficient (D = 2.5 ± 0.1 × 10?5 cm2 s?1) and kinetic parameters such as the electron transfer coefficient, (α = 0.52) and the heterogeneous rate constant (k′ = 5.5 ± 0.1 × 10?3 cm s?1) for hydrazine were determined using electrochemical approaches. Finally, the method was employed for the determination of hydrazine in water samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The effect of flame annealing on the water‐splitting properties of Sn decorated hematite (α‐Fe2O3) nanoflakes has been investigated. It is shown that flame annealing can yield a considerable enhancement in the maximum photocurrent under AM 1.5 (100 mW cm?2) conditions compared to classic furnace annealing treatments. Optimizing the annealing time (10 s at 1000 °C) leads to a photocurrent of 1.1 mA cm?2 at 1.23 V (vs. RHE) with a maximum value 1.6 mA cm?2 at 1.6 V (vs. RHE) in 1 M KOH. The improvement in photocurrent can be attributed to the fast direct heating that maintains the nanoscale morphology, leads to optimized Sn decoration, and minimizes detrimental substrate effects.  相似文献   

20.
刘佩芳  文利柏 《中国化学》1998,16(3):234-242
The mass transport and charge transfer kinetics of ozone reduction at Nafion coated Au electrodes were studied in 0.5 mol/L H2SO4 and highly resistive solutions such as distilled water and tap water. The diffusion coefficient and partition coefficient of ozone in Nafion coating are 1.78×10-6 cm2·s-1 and 2.75 at 25℃ (based on dry state thickness), respectively. The heterogeneous rate constants and Tafel slopes for ozone reduction at bare Au are 4.1×10-6 cm·s-1, 1.0×10-6 cm·s-1 and 181 mV, 207 mV in 0.5 mol/L H2SO4 and distilled water respectively and the corresponding values for Nafion coated Au are 5.5×10-6 cm·s-1, 1.1×10-6 cm·s-1 and 182 mV, 168 mV respectively. The Au microelectrode with 3 μm Nafion coating shows good linearity over the range 0-10 mmol/L ozone in distilled water with sensitivity 61 μA·ppm-1 ·cm-2, detection limit 10 ppb and 95% response time below 5 s at 25℃. The temperature coefficient in range of 11-30℃ is 1.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号