首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One μ‐alkoxo‐μ‐carboxylato bridged dinuclear copper(II) complex, [Cu2(L1)(μ‐C6H5CO2)] ( 1 )(H3L1 = 1,3‐bis(salicylideneamino)‐2‐propanol)), and two μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear copper(II) complexes, [Cu4(L1)2(μ‐C8H10O4)(DMF)2]·H2O ( 2 ) and [Cu4(L2)2(μ‐C5H6O4]·2H2O·2CH3CN ( 3 ) (H3L2 = 1,3‐bis(5‐bromo‐salicylideneamino)‐2‐propanol)) have been prepared and characterized. The single crystal X‐ray analysis shows that the structure of complex 1 is dimeric with two adjacent copper(II) atoms bridged by μ‐alkoxo‐μ‐carboxylato ligands where the Cu···Cu distances and Cu‐O(alkoxo)‐Cu angles are 3.5 11 Å and 132.8°, respectively. Complexes 2 and 3 consist of a μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear Cu(II) complex with mean Cu‐Cu distances and Cu‐O‐Cu angles of 3.092 Å and 104.2° for 2 and 3.486 Å and 129.9° for 3 , respectively. Magnetic measurements reveal that 1 is strong antiferromagnetically coupled with 2J =‐210 cm?1 while 2 and 3 exhibit ferromagnetic coupling with 2J = 126 cm?1 and 82 cm?1 (averaged), respectively. The 2J values of 1–3 are correlated to dihedral angles and the Cu‐O‐Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ) catalyzed by 1–3 was studied. Complexes 1–3 exhibit catecholase‐like active at above pH 8 and 25 °C for oxidation of 3,5‐di‐tert‐butylcatechol.  相似文献   

2.
Three copper(II) complexes, [Cu(L1)(H2O)(ClO4)]·0.5H2O (1), [Cu(L2)(H2O)(ClO4)]·0.5H2O (2), and [Cu(L2)(NCNC(OCH3)NH2)]ClO4 (3), where HL1 = 4-bromo-2-(-(quinolin-8-ylimino)methyl)phenol and HL2 = 1-(-(quinolin-8-ylimino)methyl)naphthalen-2-ol, have been prepared and characterized by elemental analysis, IR, UV–vis and fluorescence spectroscopy and single-crystal X-ray diffraction studies. The copper(II) centers assume five-coordinate square-pyramidal geometries in 1 and 2, whereas square planar copper(II) is present in 3. A methanol molecule has been inserted in the pendant end of the ligated dicyanamide in 3. Various supramolecular architectures are formed by hydrogen bonding, π?π, C–H?π, and lp?π interactions.  相似文献   

3.
Interaction of the tetrahedral chalcocyanide cluster anionic complexes of Re, K4[Re4Q4(CN)12] (Q=S, Se, Te), with Ni2+ cationic complexes with polydentate amines, such as ethylenediamine (En), diethylenetriamine (Dien), or triethylenetetraamine (Trien) was used to synthesize six novel complexes: [Ni(NH3)4(En)][{Ni(NH3)(En)2}Re4Te4(CN)12] · 2H2O, [{Ni(En)2}2Re4Se4(CN)12] · 3.5H2O, [Ni(NH3)3(Dien)]2[Re4Se4(CN)12] · 5.5H2O, [{Ni(NH3)2(Dien)}2Re4Te4(CN)12] · 2.5H2O. [Ni(NH3)2(Trien)][{Ni(NH3)(Trien)}Re4Se4(CN)12] · 2.5H2O, [{Ni(Trien)}2Re4S4(CN)12] · 3H2O. The complexes were studied by single-crystal X-ray diffraction analysis.  相似文献   

4.
A 3-D Cu(I)–CN–triazolate hybrid coordination polymer, {Cu9(NH2-BPT)2(BPT)2(CN)7}n (1) (NH2-BPT = 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole, BPT = 3,5-bis(3-pyridyl)-1,2,4-triazole), has been synthesized via self-assembly of NH2-BPT, CuCN, and K3Fe(CN)6 under hydrothermal conditions. Single-crystal X-ray diffraction data show that four of the five independent copper centers in 1 have a three-coordinated trigonal coordination geometry, and the remaining copper center has a two-coordinated linear geometry. Three Cu ions are linked by one cisoid-BPT and two CN? to form a 16-membered ring subunit, which is joined by the two-coordinate copper center via the triazole N(4)-position to generate an unprecedented [Cu7(BPT)2(CN)4] hybrid heptanuclear cluster. Each heptanuclear motif is linked to two adjacent [Cu7] clusters through four CN? anions, and further to four [Cu–CN–Cu] binuclear clusters through two transoid-NH2-BPT ligands. Each of these [Cu–CN–Cu] units is linked to four neighboring heptanuclear motifs. The overall geometry is a 3-D (4,6)-connected topological framework with Schläfli symbol of (44?×?62)(44?×?610?×?8). Compound 1 also exhibits high thermal stability and strong green fluorescence emission at 536?nm in the solid state.  相似文献   

5.
A new molybdophosphate (NH4)8{Mo2VO4[(Mo2VIO6)CH3C(O)(PO3)2]2}·14H2O (1), has been synthesized by the reaction of {Mo2VO4(H2O)6}2+ fragments with 1-hydroxyethylidenediphosphonate (hedp HOC(CH3)(PO3H2)2), and it is characterized by 31P NMR, IR, UV, element analysis, TG and single-crystal X-ray analysis. The structure analysis reveals that the polyoxoanion can be described as two {(Mo2VIO6)(CH3C(O)(PO3)2} units connected by a {Mo2VO4}2+ moiety. In the structure, the six Mo atoms are arranged into a new “W-shaped” structure, which represents a new kind of molybdophosphate.  相似文献   

6.
A new copper Schiff-base complex [Cu(C15H23N3O2)(NO3)]NO3 was synthesized and characterized by spectroscopic (IR), thermal (TG/DTA) and electrochemical methods. Single crystal X-ray diffraction revealed that the complex is monoclinic, space group P2(1)/c, with a = 23.549(2), b = 6.583(12), c = 12.765(15) Å, β = 102.823(2)°, V = 1929.4(5) Å3, Z = 4, D calcd = 1.601 Mg m?3, F(000) = 964, goodness-of-fit = 1.034 and R 1 = 0.0407. The Cu(II) is four-coordinate with distorted square planar geometry. The structure consists of isolated [Cu(C15H23N3O2)(NO3)]+ and a nitrate, which are further linked to a 3D network by significant N–H ··· O, N–H ··· N hydrogen bonds and weak O ··· Cu interaction.  相似文献   

7.
Two ternary copper(II) complexes [Cu(L1)(py)] (1) and [Cu(L2)(Himdz]?·?CH3OH (2) with substituted aroylhydrazones, 5-bromo-salicylaldehyde-3,5-dimethoxy-benzoylhydrazone (H2L1) and 5-bromo-salicylaldehyde-p-methyl-benzoylhydrazone (H2L2), pyridine (py) and imidazole (Himdz), have been synthesized. Their crystal structures and spectroscopic properties have been studied. In each complex, the metal is in a square-planar N2O2 coordination formed by the phenolate-O, the imine-N and the deprotonated amide-O atoms of L2?, and the sp2?N atom of the neutral heterocycle. In the solid state, 1 exists as a centrosymmetric dimer due to very weak apical coordination of the metal bound phenolate-O. Complex 2 has no such apical coordination and exists as a monomer. Self-assembly via C–H?···?O, N–H?···?O and O–H?···?N interaction leads to a one-dimensional chain arrangement; other non-covalent interactions such as C–H?···?π and π?···?π are not involved.  相似文献   

8.
Three new tin coordination compounds (4,4'-Hbipy)2[Sn2(C2O4)3] ( 1 ), (4,4'-H2bipy)[Sn(C2O4)2] ( 2 ), and SnCl2(4,4'-bipy) ( 3 ) were synthesized under hydro-(solvo-)thermal conditions and their crystal structures were determined by single-crystal X-ray diffraction. Compound 1 exhibits a ionic structure based on discrete [4,4'-Hbipy]+ cations and [Sn2(C2O4)3]2– anions. These two units are linked via N–H ··· O hydrogen bonds to form a pseudo-one-dimensional zigzag hydrogen-bonded chain. In compound 2 , four-coordinate Sn atoms form monomeric tin dioxalato complexes, which are connected to the doubly protonated [4,4'-H2bipy]2+ cations through N–H ··· O hydrogen bonded to give a one-dimensional zigzag hydrogen-bonded chain. Compound 3 forms a three-dimensional hydrogen-bonded network, in which 1[SnCl2(4,4'-bipy)] linear chains are interconnected to each other by C–H ··· Cl hydrogen bonding. The solid-state UV/Vis/NIR diffuse reflectance spectroscopy shows that three compounds are broadband semiconductors. The thermogravimetric analysis evidences the thermal stability of the three compounds up to 175, 201, and 246 °C, respectively.  相似文献   

9.
Two complexes, [Cu2(TFSA)(2,2′-bpy)4]?·?TFSA?·?8H2O (1) and {[Cu(4,4′-bpy)(H2O)2]?·?TFSA?·?6H2O} n (2) (H2TFSA?=?tetrafluorosuccinic acid, 2,2′-bpy?=?2,2′-bipyridine, and 4,4′-bpy?=?4,4′-bipyridine), have been synthesized and structurally characterized by X-ray structural analyses. Complex 1 is a binuclear molecule bridged by TFSA ligands; 2 is a 1-D chain bridged by 4,4′-bpy ligands. The asymmetric units of the two complexes are composed of cationic complexes [Cu2(TFSA)(2,2′-bpy)4]2+ (1) and [Cu(4,4′-bpy)(H2O)2]2+ (2), free TFSA anion, and independent crystallization water molecules. A unique 2-D hybrid water–TFSA anionic layer by linkage of {[(H2O)8(TFSA)]2?} n fragments consisting of 1-D T6(0)A2 water tape and TFSA anionic units by hydrogen bonds in 1 was observed. Unique 2-D hybrid water–TFSA anionic layer generated by the linkage of {[(H2O)6(TFSA)]2?} n fragments consisting of cyclic water tetramers with appended water molecules and TFSA anionic units, and 1-D metal–water tape [Cu–H2O?···?(H2O)6?···?H2O?] n in 2 were found. 3-D supramolecular networks of the two complexes consist of cationic complexes and water–TFSA anionic assemblies connected by hydrogen bonds.  相似文献   

10.
The reactions of the dodecanuclear cluster anion [Re12CS17(CN)6]6? with ammoniacal solutions of the divalent copper salts, CuCl2 and Cu(en)2Cl2, were studied. Two new ionic compounds [Cu(NH3)5]3[Re12CS17(CN)6]·8H2O (1) and Cu(NH3)(en)2][Cu(NH3)3(en)]2-[Re12CS17(CN)6]·5H2O (2) were synthesized. The structures of both compounds were established by single-crystal X-ray diffraction.  相似文献   

11.
The reactions of the rhenium chalcocyanide cluster salts K4[Re4Q4(CN)12]·6H2O (Q = S or Se) with Cu2+ cations coordinated by the bidentate ligand 2,2′-bipyridyl (bipy) produced two new cluster compounds, [Cu(NH3)(bipy)2]2[Re4S4(CN)12]·bipy·3.25H2O (1) and [{Cu(bipy)2}2Re4Se4(CN)12]·bipy·8.5H2O (2). The structures of these complexes were solved by X-ray diffraction. Compound 1 is ionic. Compound 2 is molecular. In the structures of both compounds, there are staking interactions between the {Cu(bipy)2}2+ cationic moieties and the solvate 2,2′-bipyridyl molecules. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1875–1878, November, 2006.  相似文献   

12.
Reported herein is a study of the unusual 3′–3′ 1,4‐GG interstrand cross‐link (IXL) formation in duplex DNA by a series of polynuclear platinum anticancer complexes. To examine the effect of possible preassociation through charge and hydrogen‐bonding effects the closely related compounds [{trans‐PtCl(NH3)2}2(μ‐trans‐Pt(NH3)2{NH2(CH2)6NH2}2)]4+ (BBR3464, 1 ), [{trans‐PtCl(NH3)2}2(μ‐NH2(CH2)6NH2)]2+ (BBR3005, 2 ), [{trans‐PtCl(NH3)2}2(μ‐H2N(CH2)3NH2(CH2)4)]3+ (BBR3571, 3 ) and [{trans‐PtCl(NH3)2}2{μ‐H2N(CH2)3‐N(COCF3)(CH2)4}]2+ (BBR3571‐COCF3, 4 ) were studied. Two different molecular biology approaches were used to investigate the effect of DNA template upon IXL formation in synthetic 20‐base‐pair duplexes. In the “hybridisation directed” method the monofunctionally adducted top strands were hybridised with their complementary 5′‐end labelled strands; after 24 h the efficiency of interstrand cross‐linking in the 5′–5′ direction was slightly higher than in the 3′–3′ direction. The second method involved “postsynthetic modification” of the intact duplex; significantly less cross‐linking was observed, but again a slight preference for the 5′–5′ duplex was present. 2D [1H, 15N] HSQC NMR spectroscopy studies of the reaction of [15N]‐ 1 with the sequence 5′‐d{TATACATGTATA}2 allowed direct comparison of the stepwise formation of the 3′–3′ IXL with the previously studied 5′–5′ IXL on the analogous sequence 5′‐d(ATATGTACATAT)2. Whereas the preassociation and aquation steps were similar, differences were evident at the monofunctional binding step. The reaction did not yield a single distinct 3′–3′ 1,4‐GG IXL, but numerous cross‐linked adducts formed. Similar results were found for the reaction with the dinuclear [15N]‐ 2 . Molecular dynamics simulations for the 3′–3′ IXLs formed by both 1 and 2 showed a highly distorted structure with evident fraying of the end base pairs and considerable widening of the minor groove.  相似文献   

13.
The mediation of electron‐transfer by oxo‐bridged dinuclear ruthenium ammine [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ for the oxidation of glucose was investigated by cyclic voltammetry. These ruthenium (III) complexes exhibit appropriate redox potentials of 0.131–0.09 V vs. SCE to act as electron‐transfer mediators. The plot of anodic current vs. the glucose concentration was linear in the concentration range between 2.52×10?5 and 1.00×10?4 mol L?1. Moreover, the apparent Michaelis‐Menten kinetic (KMapp) and the catalytic (Kcat) constants were 8.757×10?6 mol L?1 and 1,956 s?1, respectively, demonstrating the efficiency of the ruthenium dinuclear oxo‐complex [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ as mediator of redox electron‐transfer.  相似文献   

14.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

15.
Dichloro(N,N-diethyl-ethane-1,2-diamine)copper(II) has copper(II) ions in square pyramidal coordination. The two nitrogen atoms of the diamine {Cu–Nprimary?=?1.979(3), Cu–Ntertiary?=?2.108(2)?Å} and two chloride ions are in the basal plane {Cu–Cl1?=?2.2680(9), Cu–Cl2?=?2.2989(8)?Å}. A centrosymmetrical dimer di-μ-chloro-bis{chloro(N,N-diethylethane-1,2-diamine-κ2)copper(II)}, C6H16Cl2CuN2, is formed by axial coordination by Cl2, trans to the tertiary nitrogen, to a second copper(II) ion, with Cu?···?Cui?=?3.4855(9) and Cl2–Cui?=?2.7860(8)?Å. The dimer is also linked by H-bond N1–H?···?Cl1i.  相似文献   

16.
Triclinic single crystals of Cu4(H3N–(CH2)9–NH3)(OH)2[C6H2(COO)4]2 · 5H2O were prepared in aqueous solution at 80 °C in the presence of 1,9‐diaminononane. Space group P$\bar{1}$ (no. 2) with a = 1057.5(2), b = 1166.0(2), c = 1576.7(2) pm, α = 106.080(10)°, β = 90.73(2)° and γ = 94.050(10)°. The four crystallographic independent Cu2+ ions are surrounded by five oxygen atoms each with Cu–O distances between 191.4(3) and 231.7(4) pm. The connection between the Cu2+ coordination polyhedra and the [C6H2(COO)4]4– anions yields three‐dimensional framework with negative excess charge and wide centrosymmetric channel‐like voids. These voids extend parallel to [001] with the diagonal of the nearly rectangular cross‐section of approximately 900 pm. The channels of the framework accommodate [H3N–(CH2)9–NH3]2+ cations and water molecules, which are not connected to Cu2+. The nonane‐1,9‐diammonium cations adopt a partial gauche conformation. Thermoanalytical measurements in air show a loss of water of crystallization starting at 90 °C and finishing at approx. 170 °C. The dehydrated compound is stable up to 260 °C followed by an exothermic decomposition yielding copper oxide.  相似文献   

17.
The crystal structures of two classical cobalt(III) complexes comprising the [CoCl(NH3)(en)(py)2]2+ cation were determined by single‐crystal X‐ray diffraction. Both complexes, dark red [CoCl(NH3)(en)(py)2]Cl2 · H2O ( 1 ) and purple [CoCl(NH3)‐(en)(py)2][HgCl4] · 1.125H2O ( 2 ), crystallize in the triclinic space group P1 . In both compounds, the Co atom exhibits a typical octahedral coordination and the configuration index of the complex is OC‐6‐43. In the case of the chloride ( 1 ), the asymmetric unit comprises one formula unit, whereas there are two formula units in the case of the tetrachloridomercurate ( 2 ). Complex cations, anions, and crystal water molecules are interconnected by various N–H ··· N, N–H ··· Cl, N–H ··· O, O–H ··· Cl, and O–H ··· O bridge bonds. As a result, compound 1 features a two‐dimensional layer structure and compound 2 exists as a three‐dimensional network.  相似文献   

18.
Four Schiff base complexes, [Cu2(L1)2(μ‐NCS)2] ( 1 ), [Cu2(L2)2(μ‐N3)2] ( 2 ), Cu[Cu(CH3COO)(L3)]2 ( 3 ), and [Zn{Zn(C3H4N2)(L3)}2(NO3)](NO3) ( 4 ) (where L1 = 2‐[(pyridin‐2‐ylmethylimino)methyl]phenol, L2 = 1‐[(pyridin‐2‐ylmethylimino)methyl]naphthalen‐2‐ol, and L3 = bis(salicylidene)‐1, 3‐propanediamine), were synthesized and characterized by elemental analyses, infrared spectroscopy, and single crystal X‐ray determinations. Both 1 and 2 are structurally similar di‐nuclear complexes, which are located at crystallographic inversion centers (with the center of the central Cu2N2 ring). In 1 , each copper atom has a slightly distorted square pyramidal configuration, coordinated by two nitrogen atoms and one oxygen atom from L1 and another two terminal nitrogen atoms from two bridging thiocyanate anions. The Cu···Cu separation is 3.466(3) Å. The structure of 2 is similar to that of 1 , with Cu···Cu separation of 3.368(2) Å. Both 3 and 4 are linear tri‐nuclear complexes. In 3 , the central Cu2+ ion is located on an inversion centre and has a distorted octahedral coordination involving four bridging O atoms from two Schiff base ligands (L3) in the equatorial plane and one O atom from each bridging acetate group in the axial positions. The coordination around the terminal Cu2+ ions is irregular‐square pyramidal, with two O and two N atoms of L3 in the basal plane and one O atom from an acetate group in the apical position. The acetate bridges linking the central and terminal Cu2+ ions are mutually trans. The Cu···Cu separation is 3.009(3) Å. In 4 , the coordination configuration of the central and the terminal zinc atoms are similar to that of the 3 , with Zn···Zn separation of 3.153(4) Å. The three Schiff bases and the corresponding three copper complexes exhibit good antibacterial properties, while the zinc complex 4 has nearly no.  相似文献   

19.
Newly designed hetero-dinuclear 3d–4f complex [Cu(L)La (NO3)2(μ-NO3)(H2O)]·EtOH ( 1 ), hetero-tetranuclear 3d–4f complex [Cu(L)Ce (NO3)2(μ-NO3)(OAc)2]2·MeOH ( 2 ) and hetero-multinuclear 3d–4f complexes [{Cu(L)Ln (NO3)3}2][Cu(L)Ln (NO3)3]2 (Ln = Pr ( 3 ) and Nd = ( 4 )) have been self-assembled from the reaction of Cu (OAc)2·H2O, Ln (NO3)3·6H2O (Ln = La, Ce, Pr and Nd) with an unsymmetric salamo-like bisoxime ligand H2L (6-Methoxy-6′-ethoxy-2,2′-[ethylenedioxybis (nitrilomethylidyne)]diphenol) based on a Schiff base condensation of 2-[O-(1-ethoxyamide)]oxime-6-methoxyphenol and 3-ethoxysalicylaldehyde. The structures of complexes 1 – 4 were characterized by elemental analyses, PXRD analyses, IR, UV–Vis spectra, and single-crystal X-ray analyses. In addition, the supramolecular interactions and fluorescence properties of complexes 1 – 4 are discussed in detail. Moreover, the antioxidant activities of the complexes 1 – 4 were determined by superoxide radical-scavenging method in vitro, which indicates that the complexes 1 – 4 all show potential antioxidant properties.  相似文献   

20.
The structure of [Co3(CN)2 {(OH)4} (NH3)8] [Co2(NO2)6 {(OH)2, NO2}] · H2O has been determined by X-ray methods. The compound crystallizes in the monoclinic space group C2h5–P21/n with a = 7.21, b = 12.38, c = 33.13 Å, β = 94°, Z = 4. The crystals contain trinuclear cations in which three Co(III) atoms are bound to two pairs of oxygen atoms. At the central Co atom there are two CN ligands in the cis position. The cation is of symmetry C2. The anion is found to be a binuclear Co(III) complex. The two Co atoms are bound to two OH and one NO2 groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号