首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The presence of organic coatings on aerosols may have important consequences to the atmospheric chemistry, in particular to the N2O5 heterogeneous hydrolysis. This is demonstrated by recent experiments which show that the uptake of N2O5 by aqueous aerosols is slowed considerably when an organic coating consisting of monoterpene oxidation products is added on the particles. To treat the mechanisms behind the suppression, an extension of the resistor model, which has been widely applied in investigation of the heterogeneous uptake by aerosols, was derived. The extension accounts for dissolution, diffusion, and chemical reactions in a multilayered organic coating, and it provides a parametrization for the heterogeneous uptake by organic-coated aerosols that can be applied in large-scale models. Moreover, the framework was applied to interpret the findings regarding the decreased uptake of N2O5 by the organic-coated aerosols. Performed calculations suggested that the reaction rate constant of N2O5 in the coating is decreased by 3-5 orders of magnitude, in addition to which the product of the solubility of N2O5 and its diffusion coefficient in the coating is reduced more than an order of magnitude compared to the corresponding value for the aqueous phase. The results suggest also that the accommodation coefficient of N2O5 to such coatings is no more than a factor of 2 smaller than that to pure water surfaces. Finally, the relevance of the results to the atmospheric N2O5 heterogeneous hydrolysis is discussed and implications to planning further laboratory studies focusing on secondary organic aerosol formation are pointed out.  相似文献   

2.
二次有机气溶胶形成的化学过程   总被引:6,自引:0,他引:6  
挥发性有机化合物的光氧化过程和光氧化产物的气态/粒子态均分过程是二次有机气溶胶形成的重要原因.二次有机气溶胶形成的化学机理主要涉及到挥发性有机化合物的光氧化过程及其一系列的后续反应,它们导致了对流层中臭氧浓度的增加和二次有机气溶胶的形成.本文将重点介绍二次有机气溶胶形成的重要化学过程和量子化学计算研究.  相似文献   

3.
Understanding the physicochemical properties and heterogeneous processes of aerosols is key not only to elucidate the impacts of aerosols on the atmosphere and humans but also to exploit their further applications, especially for a healthier environment. Experiments that allow for spatially control of single aerosol particles and investigations on the fundamental properties and heterogeneous chemistry at the single-particle level have flourished during the last few decades, and significant breakthroughs in recent years promise better control and novel applications aimed at resolving key issues in aerosol science. Here we propose graphene oxide (GO) aerosols as prototype aerosols containing polycyclic aromatic hydrocarbons, and GO can behave as two-dimensional surfactants which could modify the interfacial properties of aerosols. We describe the techniques of trapping single particles and furthermore the current status of the optical spectroscopy and chemistry of GO. The current applications of these single-particle trapping techniques are summarized and interesting future applications of GO aerosols are discussed.  相似文献   

4.
Exploratory evidence from our laboratories shows that acidic surfaces on atmospheric aerosols lead to very real and potentially multifold increases in secondary organic aerosol (SOA) mass and build-up of stabilized nonvolatile organic matter as particles age. One possible explanation for these heterogeneous processes are the acid-catalyzed (e.g., H2SO4 and HNO3) reactions of atmospheric multifunctional organic species (e.g., multifunctional carbonyl compounds) that are accommodated onto the particle phase from the gas phase. Volatile organic hydrocarbons (VOCs) from biogenic sources (e.g., terpenoids) and anthropogenic sources (aromatics) are significant precursors for multifunctional organic species. The sulfur content of fossil fuels, which is released into the atmosphere as SO2, results in the formation of secondary inorganic acidic aerosols or indigenous acidic soot particles (e.g., diesel soot). The predominance of SOAs contributing to PM2.5 (particulate matter, that is, 2.5 microm or smaller than 2.5 microm), and the prevalence of sulfur in fossil fuels suggests that interactions between these sources could be considerable. This study outlines a systematic approach for exploring the fundamental chemistry of these particle-phase heterogeneous reactions. If acid-catalyzed heterogeneous reactions of SOA products are included in next-generation models, the predicted SOA formation will be much greater and have a much larger impact on climate-forcing effects than we now predict. The combined study of both organic and inorganic acids will also enable greater understanding of the adverse health effects in biological pulmonary organs exposed to particles.  相似文献   

5.
Formation of aqueous secondary organic aerosol (aqSOA) at the air – liquid interface recently has attracted a lot of attention in atmospheric chemistry. The discrepancies in mass distributions, aerosol oxidative capacity, liquid water content, hygroscopic growth of aerosols, and formation of clouds and fogs suggest that interfacial chemistry play a more important role than previously deemed. However, detailed mechanisms at the air–water interface remain unclear owing to the lack of comprehensive understanding that underpins complicated interfacial phenomena, which are not easily measurable from field campaigns, laboratory measurements, or computational simulations. This review highlights relevant and recent technical advancement employed to study aqSOA encompassing spectroscopy and mass spectrometry. The current knowledge on the aqSOA processes is digested with an emphasis on recent research of interfacial aqSOA formation including laboratory studies and model simulations. Finally, future directions of the interfacial chemistry are recommended for field and laboratory studies as well as theoretical efforts to resolve interfacial challenges in atmospheric chemistry.  相似文献   

6.
Atmospheric aerosol particles cause one of the largest uncertainties in estimates of human influence on climate – a good reason to take a closer look at the atmospheric life cycle of the aerosols and its effects. Besides a number of primary and secondary natural aerosol sources we need to consider since the beginning of industrialisation strong manmade particle sources. During its residence in the atmosphere the aerosol interacts in many physical and chemical ways with other atmospheric trace substances, most importantly with water vapor and its liquid and solid phases. Through its direct effect on solar and thermal radiation and through its influence on clouds the atmospheric aerosol exerts a climate forcing. To data we cannot predict the ensuing climate response because of our limited understanding of essential atmospheric processes and of the many possible feedbacks within the climate system. However, already our present knowledge of the role of the atmospheric aerosol in the climate system makes strictly global views of anthropogenic climate changes questionable.  相似文献   

7.
Dicarboxylic acids are important products from photooxidation of volatile organic compounds and are believed to play an important role in the formation and growth of atmospheric secondary organic aerosols. In this paper, the interaction of five dicarboxylic acids, i.e., oxalic acid (C(2)H(2)O(4)), malonic acid (C(3)H(4)O(4)), maleic acid (C(4)H(4)O(4)), phthalic acid (C(8)H(6)O(4)), and succinic acid (C(4)H(6)O(4)), with sulfuric acid and ammonia has been studied, employing quantum chemical calculations, quantum theory of atoms in molecules (QTAIM), and the natural bond orbital (NBO) analysis methods. Several levels of quantum chemical calculations are considered, including coupled-cluster theory with single and double excitations with perturbative corrections for the triple excitations (CCSD(T)) and two density functionals, B3LYP and PW91PW91. The free energies of formation of the heterodimer and heterotrimer clusters suggest that dicarboxylic acids can contribute to the aerosol nucleation process by binding to sulfuric acid and ammonia. In particular, the formation energies and structures of the heterotrimer clusters show that dicarboxylic acids enhance nucleation in two directions, in contrast to monocarboxylic acids.  相似文献   

8.
In order to evaluate the experimental data from laminar flow diffusion chamber (LFDC) experiments on homogeneous nucleation, an extensive postmeasurement computational analysis is required. The present work investigates the influence of the used computational methodology on the derived nucleation curves. To this end a reanalysis is made of previous LFDC experiments of 1-butanol nucleation in helium [D. Brus et al., J. Chem. Phys. 122, 214506 (2005)] using two different methods. The first method is based on single fluid heat and vapor transport in the carrier gas ignoring the aerosol processes, as commonly made in LFDC data evaluations. The second method is more comprehensive as is based on multidimensional computational fluid-particle dynamics. The calculations are made under the usual simplification of one-way coupling between fluid flow and particles, which is a valid approximation in most practical aerosols, while full aerosol dynamical effects are accommodated. Similar results were produced by the two methods. This finding corroborates the usual practice of omitting aerosol calculations in LFDC experimental data evaluation.  相似文献   

9.
The effect of kinetics of chemical reactions in the gas-liquid interface between atmospheric gases and reactive solute in dilute aqueous aerosols is analysed in order to see if such processes will affect the overall uptake rate. Accordingly, a parameterization of such heterogeneous reactions was derived, taking into account interfacial reactions. Gibbs surface excess concentration of both reactive compounds and stable compounds leads to higher heterogeneous reaction rates in comparison to aqueous phase bulk reactions. An analytical formulation shows that the surface reactions may be of considerable importance for the uptake process in the case of small liquid aerosols even in the absence of organic film on the surface. In particular, we demonstrate that the uptake rate of atmospheric gas-phase oxidants (such as OH, NO(3) or O(3)) reacting with volatile organic compounds (such as ethanol or methanol) is increased by more than 10% for atmospheric aerosols with diameters lower than 0.1 microm. This effect is in addition intensified in the case of reactions of atmospheric oxidants with liquid aerosols containing organic surfactants, such as semi-volatile organic compounds, i.e., the chemical reactions at the gas-liquid interface may be dominant in the main uptake process for atmospheric submicron aerosols.  相似文献   

10.
Chlorine is a main elemental component of atmospheric particulate matter (APM). The knowledge of the chemical form of chlorine is of primary importance for source apportionment and for estimation of health effects of APM. In this work the applicability of high-resolution wavelength dispersive proton induced X-ray emission (PIXE) spectroscopy for chemical speciation of chlorine in fine fraction atmospheric aerosols is studied. A Johansson-type crystal spectrometer with energy resolution below the natural linewidth of Cl K lines was used to record the high-resolution Kα and Kβ proton induced spectra of several reference Cl compounds and two atmospheric aerosol samples, which were collected for conventional PIXE analysis. The Kα spectra which refers to the oxidation state, showed very minor differences due to the high electronegativity of Cl. However, the Kβ spectra exhibited pronounced chemical effects which were significant enough to perform chemical speciation. The major chlorine component in two fine fraction aerosol samples collected during a 2010 winter campaign in Budapest was clearly identified as NaCl by comparing the high-resolution Cl Kβ spectra from the aerosol samples with the corresponding reference spectra. This work demonstrates the feasibility of high-resolution PIXE method for chemical speciation of Cl in aerosols.  相似文献   

11.
As aerosols, such as sea salt and mineral dust, are transported through the atmosphere they undergo heterogeneous reactions with nitrogen oxides to form nitrate salts. The nitrate salt can have quite different physicochemical properties than the original aerosol, resulting in an aerosol that will markedly differ in its climate impact, heterogeneous chemistry, and photoactivity. In this Feature Article, we will review some aspects of the importance of aqueous nitrate aerosols as well as describe a new multi-analysis aerosol reactor system (MAARS) that is used to measure the physicochemical properties of these atmospherically relevant aerosols. Here we show measurements of the hygroscopic properties, cloud condensation nuclei activity, and FTIR extinction of nitrate salt aerosol. In particular, we have measured the hygroscopic growth of 100 nm size-selected nitrate particles including NaNO3, Ca(NO3)2, Mg(NO3)2, and a 1:1 mixture of Ca(NO3)2 and Mg(NO3)2 as a function of relative humidity (RH) at 298 K. Using K?hler theory, we have quantified the water content of these particles with increasing RH. FTIR extinction measurements of the full size distribution of each of the nitrate aerosols are analyzed to yield information about the local solvation environment of the nitrate ions and the long-wavelength light scattering of the particles at different RH. Furthermore, we have measured and compared the cloud condensation nuclei (CCN) activity of CaCO3, a large component of mineral dust aerosol, and Ca(NO3)2, a product of atmospherically aged CaCO3 through reaction with nitrogen oxides, at supersaturations from 0.1% to 0.9%. These quantitative physicochemical data are needed if we are to better understand the chemistry as well as the climate effects of atmospheric aerosols as they are entrained, transported, reacted, and aged in the atmosphere. Our studies here focus on aqueous nitrate salts, the products of the reaction of nitrogen oxides with sea salt and mineral dust aerosol.  相似文献   

12.
Heterogeneous chemical reactions on aerosol particles play a pivotal role in atmospheric chemistry. In this review, the fundamental concepts underlying the chemical dynamics of liquid aerosol droplets are discussed, with particular emphasis on the properties of the aqueous-air interface and the reaction mechanisms of key chemical processes. Recent laboratory studies of heterogeneous chemistry on aqueous aerosol particles are reviewed, with techniques that probe the gas phase, liquid phase and the interface directly, discussed in turn.  相似文献   

13.
It has recently been determined that organic compounds represent a significant percentage of the composition of certain atmospheric aerosols. Amphiphilic organics, such as fatty acids and alcohols, partition to the interface of aqueous aerosols. In this way, the air-aqueous interface of an aerosol has the ability to act as both a concentrator and a selector of organic surfactants. Isotherms of nonanoic acid, stearic acid, 1-octadecanol, and a binary of mixture of nonanoic and stearic acids were used to infer the packing ability and molecular orientation of the surfactants at the interface. The selectivity of the air-aqueous interface was studied by monitoring the composition of binary organic films as a function of film exposure time. The films were formed, aged, and collected with the use of a Langmuir trough. The composition of the aged film was determined via GC-MS. Surfactants with differing carbon number and chemical functionalities were studied. These included stearic acid, lauric acid, 1-octadecanol, and octadecane. The stability and packing ability of stearic and lauric acid films were examined as a function of subphase pH. The relevance of these findings as they relate to the composition and structure of organic aerosols as well as recent surface-sensitive aerosol field measurements is discussed.  相似文献   

14.
Photoionization mass spectrometry (PIMS) has been used to study the dissociative ionization of three anthropogenic atmospheric aerosol precursors (o-xylene, 2-methylstyrene, indene) and five of their main atmospheric degradation products (o-tolualdehyde, 2-methylphenol, o-toluic acid, phthalic acid, and phthaldialdehyde). Ionization and fragment appearance energies have been experimentally determined in the 7-15 eV photon energy regime. Moreover, intensive ab inito quantum chemical calculations have been performed to compute the first ionization energies and heats of formation of these compounds (including also phthalic anhydride). Several methods have been used, and the theoretical results are compared to the experimental values with the aim to find the best method to predict thermochemical data for similar molecules. The vacuum-UV fragmentation pathways following photoionization are discussed. The results of this work are important with respect to the analytical chemistry of these compounds since their basic gas phase ion energetics data are mostly unknown. They will help in interpreting real-time mass spectrometric measurements used for the study of organic aerosol formation in smog chambers and in the real atmosphere.  相似文献   

15.
Atmospheric aerosol particles are important in many atmospheric processes such as: light scattering, light absorption, and cloud formation. Oxidation reactions continuously change the chemical composition of aerosol particles, especially the organic mass component, which is often the dominant fraction. These ageing processes are poorly understood but are known to significantly affect the cloud formation potential of aerosol particles. In this study we investigate the effect of humidity and ozone on the chemical composition of two model organic aerosol systems: oleic acid and arachidonic acid. These two acids are also compared to maleic acid an aerosol system we have previously studied using the same techniques. The role of relative humidity in the oxidation scheme of the three carboxylic acids is very compound specific. Relative humidity was observed to have a major influence on the oxidation scheme of maleic acid and arachidonic acid, whereas no dependence was observed for the oxidation of oleic acid. In both, maleic acid and arachidonic acid, an evaporation of volatile oxidation products could only be observed when the particle was exposed to high relative humidities. The particle phase has a strong effect on the particle processing and the effect of water on the oxidation processes. Oleic acid is liquid under all conditions at room temperature (dry or elevated humidity, pure or oxidized particle). Thus ozone can easily diffuse into the bulk of the particle irrespective of the oxidation conditions. In addition, water does not influence the oxidation reactions of oleic acid particles, which is partly explained by the structure of oxidation intermediates. The low water solubility of oleic acid and its ozonolysis products limits the effect of water. This is very different for maleic and arachidonic acid, which change their phase from liquid to solid upon oxidation or upon changes in humidity. In a solid particle the reactions of ozone and water with the organic particle are restricted to the particle surface and hence different regimes of reactivity are dictated by particle phase. The potential relevance of these three model systems to mimic ambient atmospheric processes is discussed.  相似文献   

16.
Heterogeneous reactions have a vital role in the atmosphere due to their significant effects on the evolution of atmospheric aerosols, which in turn contribute to air pollution. However, the mechanism and kinetics of these processes involving unsaturated organic acids, important types of volatile organic compounds, are still unclear. In this work, the heterogeneous uptake of two representative atmospheric unsaturated organic acids (acrylic acid and methacrylic acid) on mineral aerosols including α‐Al2O3 and CaCO3 are investigated using a Knudsen cell reactor and an in situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) reactor. The corresponding reaction pathways are proposed from the DRIFTS analysis. In addition, the initial uptake coefficients of unsaturated organic acids and their heterogeneous fate are obtained for the first time. Our results suggest that heterogeneous reactions on α‐Al2O3 and CaCO3 can be important sinks for acrylic acid and methacrylic acid, as well as possible contributors to the organic coating found on atmospheric aerosols, especially in high‐pollution events.  相似文献   

17.
Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) emitted from anthropogenic and biogenic sources are oxidized by reactions with OH radicals, O(3), NO(3) radicals, or Cl atoms to form less volatile products that subsequently partition into aerosol particles. Once in particles, these organic compounds can undergo heterogenous/multiphase reactions to form more highly oxidized or oligomeric products. SOA comprises a large fraction of atmospheric aerosol mass and can have significant effects on atmospheric chemistry, visibility, human health, and climate. Previous articles have reviewed the kinetics, products, and mechanisms of atmospheric VOC reactions and the general chemistry and physics involved in SOA formation. In this article we present a detailed review of VOC and heterogeneous/multiphase chemistry as they apply to SOA formation, with a focus on the effects of VOC molecular structure on the kinetics of initial reactions with the major atmospheric oxidants, the subsequent reactions of alkyl, alkyl peroxy, and alkoxy radical intermediates, and the composition of the resulting products. Structural features of reactants and products discussed include compound carbon number; linear, branched, and cyclic configurations; the presence of C[double bond, length as m-dash]C bonds and aromatic rings; and functional groups such as carbonyl, hydroxyl, ester, hydroxperoxy, carboxyl, peroxycarboxyl, nitrate, and peroxynitrate. The intention of this review is to provide atmospheric chemists with sufficient information to understand the dominant pathways by which the major classes of atmospheric VOCs react to form SOA products, and the further reactions of these products in particles. This will allow reasonable predictions to be made, based on molecular structure, about the kinetics, products, and mechanisms of VOC and heterogeneous/multiphase reactions, including the effects of important variables such as VOC, oxidant, and NO(x) concentrations as well as temperature, humidity, and particle acidity. Such knowledge should be useful for interpreting the results of laboratory and field studies and for developing atmospheric chemistry models. A number of recommendations for future research are also presented.  相似文献   

18.
The oceans contribute significantly to the global emissions of a number of atmospherically important volatile gases, notably those containing sulfur, nitrogen and halogens. Such gases play critical roles not only in global biogeochemical cycling but also in a wide range of atmospheric processes including marine aerosol formation and modification, tropospheric ozone formation and destruction, photooxidant cycling and stratospheric ozone loss. A number of marine emissions are greenhouse gases, others influence the Earth's radiative budget indirectly through aerosol formation and/or by modifying oxidant levels and thus changing the atmospheric lifetime of gases such as methane. In this article we review current literature concerning the physical, chemical and biological controls on the sea-air emissions of a wide range of gases including dimethyl sulphide (DMS), halocarbons, nitrogen-containing gases including ammonia (NH(3)), amines (including dimethylamine, DMA, and diethylamine, DEA), alkyl nitrates (RONO(2)) and nitrous oxide (N(2)O), non-methane hydrocarbons (NMHC) including isoprene and oxygenated (O)VOCs, methane (CH(4)) and carbon monoxide (CO). Where possible we review the current global emission budgets of these gases as well as known mechanisms for their formation and loss in the surface ocean.  相似文献   

19.
介绍了一个面向高年级本科生的研究型计算化学实验。主族元素AB4型含氧酸根是无机和结构化学理论课程中讨论化学键类型的例子,然而其结果却存在争议。本实验利用常用量子化学软件,通过计算化学方法分析化学成键,验证猜测,并得出结论。旨在通过本实验,锻炼学生对量子化学计算方法的运用,进而加深对化学基础知识的理解。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号