首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
钽离子掺杂对LiFePO4 / C物理和电化学性能的影响   总被引:2,自引:0,他引:2  
采用PAM(聚丙烯酰胺)模板-溶胶凝胶法在惰性气氛下合成钽掺杂的LiFePO4/C复合正极材料,考察了钽对目标化合物的物理和电化学性能的影响。研究结果表明,0.33C的电流下充放电时,掺杂前后第2个循环的放电容量分别为138.6 mAh·g-1和155.5 mAh·g-1,循环20次后容量为141 mAh·g-1和156 mAh·g-1。电化学交流阻抗表明,掺杂后的材料阻抗Rct从180 Ω减小到120 Ω。振实密度比掺杂前提高0.312 g·cm-3。  相似文献   

2.
为考察不同锰源对所制备尖晶石LiMn2O4(LMO)电化学性能的影响(特别是高温性能),采用沉淀法制备前驱体,通过不同煅烧温度制备得到最常用的锰氧化物(MnO2、Mn2O3和Mn3O4)为锰源,经相同条件制备得到LMO正极材料,通过考察所得LMO形貌及电化学性能来研究锰源与LMO电化学性能的关系。研究结果表明,相同的前驱体在不同煅烧温度下可以得到不同的锰氧化物,且各自具有不同的形貌结构。由这些锰氧化物都可以得到高纯度的LMO,但产物形貌结构以及材料中的八面体晶体含量和尺寸不同。由Mn2O3制备得到的LMO材料中的八面体晶体含量最多,且尺寸最均匀,在3种LMO中容量性能、倍率性能和循环性能最好:0.2C(1C=148 mA·g-1)下首次放电比容量为131.8 mAh·g-1;3C下还有100.4 mAh·g-1的放电比容量。其对应半电池在0.5C下循环100次后,放电比容量还有116.0 mAh·g-1,容量保持率为93.9%,电化学储能性能远远优于其他2种LMO。即使是在高温55 ℃下,由Mn2O3得到的LMO也表现出明显优于其他2种材料的高倍率性能和抗衰减性能。  相似文献   

3.
采用CTAB-C8H18-C4H9OH-H2O微乳体系制备出MnCO3,将其灼烧成Mn2O3之后,与Li2CO3混合,800 ℃高温焙烧,获得了颗粒大小为数百纳米,均匀分布的纯相尖晶石LiMn2O4。这一材料的电化学性能优秀,0.5C的电流在3~4.2 V之间充放电时,首次放电比容量为124 mAh·g-1,经过110次循环,保留比容量118 mAh·g-1,平均每次容量损失<0.05%。该材料的倍率性能尤为优异,10C放电的比容量在110 mAh·g-1以上,功率约为0.2C时功率的45倍。  相似文献   

4.
采用高温固相法合成出层状锂离子电池正极材料LiNi1/3Mn1/3Co1/3O2。通过XRD、ICP、SEM和电化学测试手段对产物的结构、组成、形貌及电化学性能进行了研究。XRD结果表明此方法合成的LiNi1/3Mn1/3Co1/3O2具有标准的α-NaFeO2型层状结构,SEM照片显示颗粒粒径大约在500 nm左右,粒径分布较窄。以20 mA·g-1电流密度放电,充放电电压在2.8~4.4 V之间,其首次放电比容量为170 mAh·g-1,40次循环容量保持率为85.3%。进一步加入石墨导电剂后,同样条件下首次放电比容量变为179 mAh·g-1,50次循环容量保持率为89.6%。容量衰减主要发生在前10次循环。XRD和SEM测试表明循环初期容量衰减的原因是由材料本体结构变化和界面反应共同作用的结果。  相似文献   

5.
层状LiCo1/3Ni1/3Mn1/3O2正极材料的合成及电化学性能研究   总被引:13,自引:0,他引:13  
采用液相法在800 ℃空气中烧结20 h合成出层状LiCo1/3Ni1/3Mn1/3O2正极材料。通过XRD、IR、SEM、XPS和电化学性能测试考察了产物的组成、结构、形貌及电化学性能。结果表明,所合成的LiCo1/3Ni1/3Mn1/3O2为六方单相,层状结构发育完善;产物呈球形且粒度小,分布窄,平均粒径为0.3 μm。以1 mA·cm-2的电流密度,在2.7~4.3 V区间进行充放电测试,前4周的充放电比容量分别为168/160 mAh·g-1、169/162 mAh·g-1、165/160 mAh·g-1、163/158 mAh·g-1,循环性能优良。循环伏安实验表明,该材料在3.9 V附近出现了一对对称性好的氧化还原峰。  相似文献   

6.
采用水基流变相辅助的固相法,以异质碳蔗糖和石墨为碳源,合成了LiMn0.8Fe0.2PO4/C复合材料,研究了不同石墨加入方式对所制复合材料电化学性能的影响,并对所制备的LiMn0.8Fe0.2PO4/C复合材料进行了X射线衍射(XRD)、N2吸附-脱附测试、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征。结果表明,不同石墨包覆工艺对材料结构和电化学性能具有显著影响。前驱体煅烧后再加入石墨获得的样品纯度高,形貌呈均一的椭圆形,在0.1C下的放电比容量为149 mAh·g-1,达到其理论比容量的87%;在5C下最大的放电比容量为133 mAh·g-1;在2C倍率下经过300次循环后比容量维持在127 mAh·g-1,衰减率仅为1.9%,表现出了优良的循环稳定性。  相似文献   

7.
以乙二胺四乙酸(EDTA)为配位剂,采用溶胶凝胶和溶剂热法相结合的方法合成了Li2MnSiO4/C纳米复合正极材料。经过EDTA配位的锂锰硅前驱体在氩气中经过700℃煅烧后,产生为颗粒尺寸约为50nm的Li2MnSiO4/C纳米复合粉体。在0.1C=33mA·g-1进行充放电测试时,其首次充电和放电比容量分别为223和140mAh·g-1,第5次循环放电比容量仍为138mAh·g-1;电流密度升至0.2C=66mA·g-1时,在第20次循环的放电比容量仍可稳定在80mAh·g-1左右。这些结果表明,EDTA的配位作用可抑制杂相的形成,这种分散性相对较好的纳米复合粉体Li2MnSiO4正极材料表现出提高的循环稳定性。  相似文献   

8.
Li3V2(PO4)3的溶胶-凝胶合成及其性能研究   总被引:1,自引:0,他引:1  
以LiOH·H2O(LiF、Li2CO3、LiCH3COO·2H2O)、NH4VO3、H3PO4和柠檬酸为原料,采用Sol-gel法合成锂离子电池正极材料Li3V2(PO4)3。优化了锂源、溶胶的pH值、预烧条件、煅烧温度等合成条件,并采用XRD、SEM、恒电流充放电及循环伏安试验等方法,研究了所合成的Li3V2(PO4)3的结构形貌和电化学性能。结果表明,以LiOH·H2O为锂源,溶胶的pH值等于3,于氩气氢气(体积比9∶1)混合气中300 ℃预烧 4 h,并在氩气氢气(体积比9∶1)混合气中600 ℃煅烧8 h合成的Li3V2(PO4)3正极材料为标准的单斜结构,具有较高的放电比容量和较好的循环稳定性,0.1C和1C倍率下首次放电比容量分别为130 mAh·g-1和129 mAh·g-1;1C倍率下循环40次后,容量仍为127 mAh·g-1,容量保持率为98.4%;随后又进行10C倍率放电,10次循环后容量为105 mAh·g-1,容量保有率达98.1%。循环伏安测试表明,该正极材料具有较好的电化学可逆性。  相似文献   

9.
以共沉淀法得到的类球形MnCO3为前驱物,制备了类球形正交LiMnO2(So-LiMnO2),采用XRD、SEM和N2吸附技术对样品进行表征;与非球形正交LiMnO2(No-LiMnO2)进行了对比研究。结果表明:o-LiMnO2的堆垛层错度、结晶状况、颗粒形貌和大小与前驱物的微结构密切相关;在80次电化学循环测试过程中,So-LiMnO2经15次循环可达最大的放电容量152 mAh·g-1,其容量衰减平均每次循环0.58 mAh·g-1;而No-LiMnO2要经过38次循环才能达到最大放电容量128 mAh·g-1,容量衰减平均每次循环高达1.24 mAh·g-1。TEM和EDS分析证明:由一次粒子团聚的类球形So-LiMnO2能有效地抑制电解液对材料的腐蚀、减少Mn的溶解,从而提高了电化学循环能力。  相似文献   

10.
KCl熔盐法制备LiMn2O4   总被引:4,自引:0,他引:4  
采用熔盐法合成了LiMn2O4。熔盐的使用可以使原来固相反应的高温焙烧时间缩短。合成获得的材料结晶良好,颗粒大小在数百个纳米左右,有较明显的团聚现象。该材料的初始容量为113 mAh·g-1,循环性能优良,前100次的容量平均衰减率在0.05%左右;倍率性能亦非常优秀,8 C放电时的容量为1 C放电容量的93%以上。熔盐的用量在4倍于Li+以上时,对材料的结构形貌和性能都没有明显影响。  相似文献   

11.
以月桂酸为碳源和表面活性剂,氢氧化锂、碳酸锂和醋酸锂为锂源,采用流变相法制备LiFePO4/C复合材料。运用X射线衍射(XRD)、扫描电子显微镜(SEM)、粒度分析、恒流充放电测试、循环伏安以及交流阻抗测试等方法对复合材料进行表征。结果表明,不同的锂源对LiFePO4/C复合材料的结构和电化学性能均有很大影响,以氢氧化锂为锂源合成的LiFePO4/C材料展示出最佳的循环性能和倍率性能。该材料在0.1C下放电比容量为153.4 mAh.g-1,在大倍率10 C下,容量保持率仍可达76%,甚至10C下循环800次后,容量衰减率仅有4%,SEM结果显示该材料具有较小的粒径(~200 nm),且分布集中,有效提高了电子迁移速率,从而改进了LiFePO4/C的倍率性能。  相似文献   

12.
金属氧化物掺杂改善LiFePO4电化学性能   总被引:16,自引:0,他引:16  
采用氧化物前驱体对磷酸铁锂(LiFePO4)进行少量金属离子掺杂,并用XRD,SEM和恒电流充放电对掺杂的LiFePO4进行了研究。结果表明,少量的掺杂离子在很大程度上提高了LiFePO4的电化学性能,特别是大电流放电性能。1.0 mol%的Nb5+掺杂LiFePO4的0.1 C放电容量约150 mAh·g-1;即使在3 C倍率下放电,也有117 mAh·g-1的容量。掺杂的效果与掺杂离子的半径、价态密切相关,半径小、价态高的离子对提高LiFePO4的电化学性能有利。在掺杂量较小时(<2.0 mol%),掺杂效果与掺杂离子的浓度关系不大。  相似文献   

13.
以三价铁化合物作为铁源,采用碳热还原法一步合成得到锂离子电池正极材料LiFePO4。利用X射线衍射仪、扫描电镜、碳硫分析法和电化学性能测试方法对磷酸铁锂材料的物相结构、表面形貌、含碳量(质量分数)以及电性能进行分析研究。讨论了烧结温度、烧结时间和掺碳量对材料电性能的影响。结果表明,LiFePO4的电性能与烧结温度、时间以及掺碳量有密切的关系,在优化试验条件下制备的正极材料LiFePO4,以电流密度为17 mA·g-1充放电,首次放电容量达到141.8 mAh·g-1,80次循环后放电容量为137.7 mAh·g-1,容量保持率为97.1%。  相似文献   

14.
本文以聚氧化乙烯为碳源,用柠檬酸辅助湿化学法合成了高倍率的碳包覆的LiFePO4。使用热重、粉末X射线衍射、扫描电子显微镜、透射电子显微镜、循环伏安、电化学阻抗和恒流充放电表征材料的结构和电化学性质。结果表明,该材料组成为5 wt%疏松多孔的碳包覆相纯度很高的小的LiFePO4颗粒。该材料适用于高倍率充放电,在5 C、10 C和20C的放电倍率下可以分别得到120、90和60 mAh·g-1的稳定容量。  相似文献   

15.
不同碳源对多孔球形LiFePO4/C复合材料的影响   总被引:2,自引:0,他引:2  
采用喷雾干燥-碳热还原法(SDCTM),分别研究了无机和有机碳源对锂离子正极材料LiFePO4/C形貌、结构及其充放电性能的影响。结果表明:以无机碳源炭黑制备的LiFePO4/C呈不规则球形,一次颗粒粒径在800nm左右,比表面积为2m2·g-1,0.1C放电比容量为107.3mAh·g-1。而以有机碳源制备的LiFePO4/C,其形貌较为规则,呈多孔球形结构,具有较高的比表面积和放电比容量。其中,以柠檬酸为碳源制备的多孔球形LiFePO4/C复合材料,其孔径均在50nm左右,比表面积可达32m2·g-1;在室温下,0.1C和10C首次放电比容量分别为158.8和87.2mAh·g-1,具有优异的循环性能和高倍率充放电性能。  相似文献   

16.
Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles (4–6 nm) were fabricated using bimodal mesoporous carbon (BMC) as continuous conductive networks. The unique pore structure of BMC not only promises good particle connectivity for LiFePO4, but also acts as a rigid nano-confinement support that controls the particle size. Furthermore, the capacities were investigated respectively based on the weight of LiFePO4 and the whole composite. When calculated based on the weight of the whole composite, it is 120 mAh·g?1 at 0.1 C of the high loading electrode and 42 mAh·g?1 at 10 C of the low loading electrode. The electrochemical performance shows that high LiFePO4 loading benefits large tap density and contributes to the energy storage at low rates, while the electrode with low content of LiFePO4 displays superior high rate performance, which can mainly be due to the small particle size, good dispersion and high utilization of the active material, thus leading to a fast ion and electron diffusion.  相似文献   

17.
锰源对燃烧法制备5V级正极材料LiNi0.5Mn1.5O4的影响   总被引:1,自引:1,他引:0  
以硝酸锰和醋酸锰,采用蔗糖燃烧法制备锂离子电池正极材料LiNi0.5Mn1.5O4通过XRD、SEM、粒径分布测试、循环伏安、恒流充放电测试以及交流阻抗等方法,研究了醋酸锰和硝酸锰对产物的结构、形貌、粒径及电化学性能的影响。XRD测试结果表明样品的结构都为立方尖晶石型,属于Fd3m空间群。不同的锰源对材料的粒径及粒径分布有很大的影响。以醋酸锰为原料制得的材料的粒径较小并且分布更均匀,有利于锂离子的脱出和嵌入从而提高电化学性能。以醋酸锰为锰源制得的LiNi0.5Mn1.5O4在3.6~5.2 V的充放电电压范围内的电化学性能更好,1C(1C=140.0 mA.g-1)倍率的首次放电容量为144.5 mAh.g-1,循环100周后容量保持率为96%,在3C,5C,10C以及20C的放电容量分别为136.3,132.0,124.7以及96.6 mAh.g-1。  相似文献   

18.
以三价铁盐为铁源,采用多元醇还原法在低温下制备出了具有不同长径比的棒状LiFePO4材料. 通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、循环伏安(CV)、交流阻抗谱(EIS)和恒电流充放电测试等手段分析了不同回流反应时间下制备出的前驱体和最终的LiFePO4/C 样品. 结果表明:回流反应时间对LiFePO4的形貌和特性有明显的影响. 通过把回流反应时间从4 h延长至16 h,材料的形貌由不规则的短棒状颗粒变为规则的长棒状颗粒,且棒的直径明显变小. 当回流反应时间为10 h 时,样品复合了多种形貌,有利于电子的传输,在低倍率下具有优秀的性能,0.1C放电比容量为163 mAh·g-1;当回流反应时间为16 h 时,样品具有最大的长径比,有利于锂离子的扩散,在高倍率下具有良好的性能,1C、3C、5C、10C、20C倍率下放电比容量分别为135、125、118、110、98 mAh·g-1,循环性能良好,几乎无衰减.  相似文献   

19.
以FeSO4·7H2O、NH4H2PO4、H2O2、Li2CO3、C6H12O6和自制的氧化石墨烯(GO)为原料,分别采用原位包覆法和非原位包覆法制备了石墨烯磷酸铁锂样品:LiFePO4/C/G-1和LiFePO4/C/G-2。用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、交流阻抗(EIS)和充放电测试研究了两种包覆方法制备的样品的晶体结构、形貌和电化学性能。结果表明原位法包覆所得复合材料LiFePO4/C/G-1具有更优秀的电性能:在2.5~4.1V充放电,0.1C和1C首次放电比容量分别为158.15和150.5mAh·g-1,在1C倍率下循环500次后容量保持率达到98.3%。  相似文献   

20.
本文以LiOH.H2O、NH4VO3、H3PO4和柠檬酸为原料,采用溶胶-喷雾干燥法制备Li3V2(PO4)3/C正极材料,对比了喷雾前驱体直接煅烧与机械活化后煅烧的样品的结构、形貌及其电化学性能。采用XRD、SEM、BET和振实密度测试等对样品的结构、形貌等进行了表征;采用恒流充放电、CV和EIS等手段考察了材料的电化学性能。结果表明,溶胶-喷雾干燥得到的样品为多孔球壳形,其壳体由厚度为100 nm左右的纳米片组成,经机械活化后煅烧保持保持了其纳米片结构,其结晶度与振实密度改善较明显,电化学性能较优异。0.1C放电比容量为123.6 mAh.g-1,10C和20C高倍率放电比容量还高达107.8和106.0 mAh.g-1。电化学阻抗结果表明,由该方法制备的样品具有较小的电荷转移阻抗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号