首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 177 毫秒
1.
通过高温高压高湿(HAST)加速老化试验,研究了烧结NdFeB磁体在该腐蚀环境中的加速腐蚀行为。研究表明,高矫顽力烧结NdFeB磁体在HAST环境中具有更低的质量损失和磁通损失,比低矫顽力磁体的质量损失减少了74%,磁通损失率降低了80%。这是由于Dy和Co的联合添加,使其在晶界处形成了富含Dy,Co的富稀土相或Nd-Co相,降低了富Nd相的比例,提高了富稀土相的腐蚀电位,从而有效抑制了磁体在高温高压高湿腐蚀环境中的腐蚀速率。由于烧结Nd Fe B磁体独特的微观组织结构,使其腐蚀行为具有典型的局域选择性晶间腐蚀的特征。  相似文献   

2.
为了提高烧结钕铁硼磁体的矫顽力和热稳定性,采用双合金的方法添加Pr_(16)Dy_(64)Fe_(20)(%,质量分数)三元稀土合金制备低重稀土烧结钕铁硼磁体,当合金添加量为3%时,钕铁硼磁体的矫顽力从未添加时的1038 kA·m~(-1)提高到1308 kA·m~(-1),剩磁仅下降了0.03 T。添加Pr_(16)Dy_(64)Fe_(20)合金后磁体的微观组织得到明显改善,富钕相数量增多,分布更加连续均匀,晶粒间交换耦合作用减弱。Dy元素大部分分布在晶界角隅处,并进入主相晶粒外延周围形成更高磁晶各向异性场的(PrNd,Dy)_2Fe_(14)B相,提高了磁体的矫顽力,热稳定性也得到明显改善。  相似文献   

3.
采用直流磁控共溅射技术,在烧结态NdFeB磁体表面沉积一层非重稀土低熔点PrZn合金,在750℃×3 h进行真空热扩渗处理,500℃×2 h进行回火处理,研究此种工艺对磁体的磁性能、耐热性能及显微组织结构的影响。晶界扩散处理后,磁体在保持剩磁和方形度基本不变的情况下,矫顽力由963.96 k A·m~(-1)提高到1317.14 k A·m~(-1),即在原来的基础上增加了36.64%。磁体的耐热性得以提高,α_(Br)和β_(Hcj)均得以改善,α_(Br)由原样的-0.1188%·℃~(-1)降低到扩渗样的-0.1180%·℃~(-1),β_(Hcj)由原样的-0.5533%·℃~(-1)降低为扩渗样的-0.5133%·℃~(-1)。磁体显微组织结构的改善以及成分分布的优化,是晶界扩散处理后磁体矫顽力和耐热性得以改善的最主要原因。  相似文献   

4.
研究了烧结Nd-Fe-B磁体表面渗镀Dy2O3对磁体组织结构与磁性能的影响. 表面渗镀Dy2O3后, N40的矫顽力由1017 kA · m-1提高到1146 kA · m-1, 38H的矫顽力由1575 kA · m-1提高到1753 kA · m-1, 而通过传统合金化添加同量Dy, N40和38H的矫顽力分别为1061和1634 kA · m-1. 磁体表面渗镀Dy2O3后热稳定性也大大改善. 组织分析表明, 元素Dy从表面扩散并渗入磁体的内部约20 μm厚, Nd2Fe14B晶粒表层附近Dy含量比晶界中高, 说明Dy2O3中的Dy通过扩散与富Nd相及Nd2Fe14B晶粒表面层的部分Nd发生置换反应, 增强了Nd2Fe14B晶粒表面层的磁晶各向异性. 在此基础上, 提出了高矫顽力高热稳定性渗Dy的烧结Nd-Fe-B磁体中Dy分布的理想模型.  相似文献   

5.
研究了双主相(Nd, Dy)-Fe-B烧结磁体晶界扩散TbF_3的热处理工艺、微观结构及矫顽力再提升的技术机制。晶界扩散最佳的一级、二级热处理温度为900, 490℃。经过扩散工艺的综合优化磁体的矫顽力由20.00 kOe增加到29.49 kOe。利用电子探针微区分析仪(EPMA)对其元素分布进行分析,F扩散进入磁体表层,而Tb扩散进入磁体的几何中心;Tb更容易替代磁性相中的Nd元素而不是Dy; Tb在主相晶粒间的晶界相中不存在浓度梯度,说明主相晶粒之间的类似毛细吸力也是Tb扩散的驱动力之一。X射线衍射分析表明,扩散后磁体的取向度略微降低。综合来看晶界扩散明显改善了磁体的温度稳定性,在20~150℃之间,扩散工艺使磁体剩磁温度系数α由-0.107%·℃~(-1)提升到-0.093%·℃~(-1),矫顽力温度系数β由-0.539%·℃~(-1)增加到-0.483%·℃~(-1)。  相似文献   

6.
通过优化合金成分设计与改进速凝片铸技术、烧结技术,应用国内通用的工业生产烧结钕铁硼磁体的各类原材料,在工业生产线上实现了45UH高性能烧结钕铁硼磁体的批量生产。SEM观察和XRD分析结果表明:磁体具有比较高的取向度;其显微组织致密、精细而均匀,平均晶粒尺寸约为5μm。45UH烧结钕铁硼磁体的典型磁性能为Br=1.363 T,Hcb=1060 kA.m-1,Hcj=2140 kA.m-1,Hk=1625 kA.m-1,(BH)max=366.0 kJ.m-3;其Hcj/79.6 kA.m-1+(BH)max/7.96 kJ.m-3=72.8。在295~453 K温度区间,其剩磁与内禀矫顽力的温度系数分别为-0.108%.K-1和-0.486%.K-1。当L/D=0.7时,在473 K保持2 h磁体开路磁通不可逆损失为4.1%左右。批量生产的45UH烧结钕铁硼磁体,其常温磁性能优异,温度稳定性良好。  相似文献   

7.
高Ga低B烧结钕铁硼磁体可以在具有较高矫顽力的基础上减少重稀土的使用,因此具有重要的研究价值。本文制备了含0.2%(质量分数)Nb的高性能48H高Ga低B烧结钕铁硼磁体,与0.2%Ti掺杂磁体进行了系统的对比,分析了Nb与Ti元素掺杂对高Ga低B磁体的磁性能、微观结构、元素分布以及耐磨性能的影响与差异。与Ti取代磁体相比,Nb取代磁体的晶界相更连续、更厚同时磁隔绝效果更好,因此具有更高的矫顽力。此外Nb更容易富集在三角晶界处,抗断裂性相对较差,更容易磨损,因此具有更好的加工性能。这为优化高Ga低B磁体的显微结构制备高性能的烧结磁体提供了有意义的指导。  相似文献   

8.
针对不同类型及不同尺寸的两类NdFeB永磁体分别研究了它们随温度变化的热退磁行为。采用样品的整体剩余磁通来表征热退磁过程中磁体性能的变化。结果表明,Pc较小的永磁体温度稳定性较差,随温度的升高,样品的剩余磁通迅速衰减;Pc<<0.1的普通型永磁体,温度为100℃时样品的剩余磁通损失超过60%。高矫顽力型永磁体比普通型磁体具有更优越的温度稳定性和高温性能。温度升高主要导致磁体矫顽力降低,140℃时普通型磁体的矫顽力降低约80%,而高矫顽力型磁体的矫顽力只降低了约20%。  相似文献   

9.
采用涂覆重稀土氢化物为扩散源,制备晶界扩散铈磁体,研究了磁性能和组织结构特点,并对其温度稳定性进行了分析评价。晶界扩散铈磁体的矫顽力从12.07 kOe提高至18.49 kOe,矫顽力和剩磁温度系数分别优化到-0.502%·℃~(-1)和-0.184%·℃~(-1)。采用EPMA和WDS成分分析表明,在磁体表层附近,大量Tb元素扩散到主相晶粒内部;扩散深度大于60μm时, Tb元素主要分布在晶界,并且在主相晶粒边缘形成(RE,Tb)_2Fe_(14)B壳层。由于Tb_2Fe_(14)B相和Ce_2Fe_(14)B相的各向异性场均具有较好的温度稳定性,因此,晶界扩散铈磁体可以获得与烧结钕铁硼磁体相当的矫顽力温度系数。  相似文献   

10.
潘伟  李东 《中国稀土学报》1991,9(2):155-159
研究了用还原扩散合金粉末制备的(Nd_(1-x)Dy_x)_(16)(Fe_(1-y-z)Al_ySi_z)_(74)Co_4B_6烧结磁体的磁性和热磁特性。发现在固定Dy含量时,Al比Si显著地提高了内禀矫顽力(_iH_c)。同时添加Al和Si可以改善磁体的磁性和热稳定性。当x=0.15,y=0.0085、z=0.0145时,经500℃回火获得了最大(_iH_c)。磁体在200℃下放置0.5h(Bd/Hd=-3.2),开路剩磁不可逆损失小于5%。在180℃下1000h时效后,开路剩磁不可逆损失小于3%。磁体性能为:B_r=1.09T,_bH_c=827.6kA/m,_iH_c=1973.5kA/m,(BH)_(max)=221.2kJ/m~3。  相似文献   

11.
晶界扩散技术经过近些年的发展,研究人员对晶界扩散技术的涂覆化合物种类、涂覆方式、热处理工艺等进行了系统的研究。O元素是烧结NdFeB磁体生产环节中重要的影响因素,但对晶界扩散的影响却很少被研究。通过调节磁体制备工艺,获得不同O含量的NdFeB磁体,并对磁体分别进行Tb_4O_7和TbH_x晶界扩散。得出当涂覆增重小于7 mg·cm~(-2)时,两种化合物对磁体矫顽力的提升幅度基本一致。当涂覆增重为11 mg·cm~(-2)时,随着基体中O含量的增加,两种化合物对矫顽力的提升都有不同程度的减弱。EPMA结果显示:Tb_4O_7晶界扩散后O, Tb元素主要分布于三角晶界处,呈团聚状态。TbH_x晶界扩散后Tb元素分布相对弥散,浓度梯度不明显。在高O基体中,相同涂覆量条件下, TbH_x晶界扩散后对矫顽力提升幅度比Tb_4O_7晶界扩散后高1.6 kOe。  相似文献   

12.
研究了烧结Nd-Fe-B磁体在高压加速、中性盐雾和恒定湿热腐蚀环境中的腐蚀行为,讨论了合金成分对磁体耐蚀性的影响以及不同腐蚀环境下磁体的腐蚀特征。结果表明:以重稀土Dy替代部分Nd,及添加微量Co等元素,可以提高烧结Nd-Fe-B磁体的耐蚀性能。烧结NdFe-B磁体在三种不同的腐蚀环境中的腐蚀产物和腐蚀形貌有着明显的不同。烧结Nd-Fe-B磁体在中性盐雾腐蚀环境中的腐蚀速率明显较高压加速腐蚀环境要快,这是由于高活性的氯离子扩散进基体表层,导致磁体表面的钝化膜遭到破坏,从而加剧磁体的电化学腐蚀进程。  相似文献   

13.
由于Nd-Fe-B磁体热稳定性较差,在服役过程中会产生不可逆磁通损失,限制了磁体的应用范围。通过探究钕铁硼磁体不可逆磁通损失与矫顽力、导磁系数(Pc值)、服役温度、服役时间之间的关系,并阐述了磁体不可逆磁通损失的产生机制。研究发现磁体随服役温度和服役时间的增加不可逆磁通损失大幅度增加,热稳定性变差,提高磁体矫顽力和Pc值可以降低磁体的不可逆磁通损失。不可逆磁通损失的产生主要是磁体磁矩发生偏转,与原磁化方向不同,反向畴增多,形成了反磁化场,造成磁体磁性能下降。  相似文献   

14.
系统测量了SmCo_5、Ce(Co,Cu,Fe)_5、Sm_(0.5)Ce_(0.5)(Co,Cu,Mn)_7、低矫顽力和高矫顽力的2-17型Sm-Co-Cu-Fe-Zr烧结体在150℃和250℃的长期稳定性及室温至250℃的可逆特性。两种2-17型磁体显示最好的可逆稳定性,但高矫顽力2-17磁体的时效性能比低矫顽力2-17磁体优越得多。Sm-Ce-Co-Cu-Mn磁体在150℃和250℃的长期稳定性是最好的,在B/H=-2.5时,这种磁体于250℃时效2100h后,其开路磁通仅降低1%,但是在高温,其开路剩磁可逆损失却是2-17磁体的两倍。Ce-Co-Cu-Fe磁体的热稳定性最差,高温下开路磁通可逆损失是2-17磁体的三倍,在150℃和250℃的长期时效过程中,磁通随时间的延长而不断减小。在250℃时效2100h后,低矫顽力2-17磁体的开路磁通损失虽是SmCo_5的五倍,但其内禀矫顽力没有改变,而SmCo_5却降低了3kOe,重新饱和磁化后这一降低仍然存在。  相似文献   

15.
采用晶界添加MgF2制备烧结NdFeB磁体,通过扫描电镜、透射电镜和性能测试,研究了烧结NdFeB磁体的微观组织及其对磁性能、电阻率的提高和耐腐蚀性能的影响.结果表明:添加适量MgF2可实现在磁体剩磁、矫顽力和电阻率提高的基础上,同时提高材料的腐蚀电位,并且在极化曲线的阳极部分相同电位条件下,具有较小的极化电流密度,从而达到改善NdFeB磁体耐腐蚀性能的目的.磁体显微组织研究表明F元素进入晶界相,形成F含量约为30%(原子分数)、以面心立方为基的有序的NdOxFy相,其与磁性能、电阻率的提高和耐腐蚀性能改善有关.  相似文献   

16.
采用粉末冶金法制备烧结Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5,研究磁粉粒度对磁体磁性能的影响.结果表明,增加球磨时间将细化磁粉粒度,提高磁粉的比表面积,有利于降低磁体的烧结温度.球磨5,7,9,11 h的磁粉的最佳烧结温度分别为1225,1225,1215,1215 ℃.磁粉球磨9 h,烧结温度为1215 ℃条件下制备的磁体的综合磁性能最优剩磁Br=0.94 T,感应矫顽力Hcb=708.4 kA·m-1,最大磁能积(BH)max=171.9 kJ·m-3,内禀矫顽力Hci=2276.6 kA·m-1;温度稳定性良好,长径比为0.7的磁体经550 ℃老化2 h后的磁通不可逆损失低于5%,有望应用于550 ℃环境中.  相似文献   

17.
主要对不同厚度烧结钕铁硼磁体进行Dy晶界扩散,主要研究了磁体氧含量的高、低对成分及磁性能梯度分布的影响。研究发现:高、低氧磁体方形度均会随着厚度增加而下降,其中前者的下降幅度尤为显著。将磁体沿着厚度方向切片进行分析发现,低氧磁体成分及矫顽力的纵深梯度分布较为均匀。电子探针微观分析结果显示:高氧样品中O, Dy元素均集中富集在团块状的富Nd相之中;而低氧样品中这种团块稀少, Dy分布在其他微细晶界形成连续条纹。低氧磁体为Dy扩散提供了连续的通道,最终能使Dy扩散饱和度及矫顽力饱和度更大于高氧磁体。  相似文献   

18.
研究双合金混粉法添加Dy对烧结Nd-Fe-B磁体的磁性能和微观结构的影响。结果表明:添加少量Dy能够同时提高磁体的矫顽力和最大磁能积;当Dy含量为1.0%时,磁体的最大磁能积达到最大值。烧结温度从1065℃增加到1085℃时,烧结Nd-Fe-B磁体的磁性能没有急剧恶化,磁体的烧结温度范围较宽。磁体在烧结过程中高Dy含量合金主相晶粒中的Dy元素扩散到不含Dy元素的合金主相晶粒中,造成最后所得磁体中存在不同Dy含量的主相晶粒;磁体不同主相晶粒中Dy含量差别较大,随着添加Dy含量的增加,磁体中不同主相晶粒平均含Dy量也逐渐增加。  相似文献   

19.
采用Tb_4O_7, TbH_x和Nd_2O_3+Tb_4O_7三种扩散源,通过晶界扩散技术制备出特高综合磁性能的钕铁硼磁体,对不同扩散源的扩散效果及扩散机制进行研究。采用TbH_x进行晶界扩散,获得综合磁性能(BH)_(max)+H_(cj)=84.26,矫顽力温度系数为-0.361%·℃~(-1)的最佳钕铁硼磁体,SEM微观结构分析表明TbH_x扩散源制备磁体在靠近磁体的表层晶粒形态与中心晶粒一致,晶粒表面平整。  相似文献   

20.
优化组织结构制备无重稀土高矫顽力Nd-Fe-B磁体   总被引:1,自引:0,他引:1  
通过优化铸片结构中柱状晶厚度为2~3μm,富Nd相沿晶界连续分布,与铸片结构对应的进行粉末细化,控制平均颗粒尺寸为2.68μm,最后配合1020℃低温烧结,制备的Nd31.50FebalCo3.00Al0.2Cu0.2B1.05(%,质量分数)磁体组织结构中平均晶粒尺寸5μm,晶粒大小均匀,晶界相分布清晰。最终获得了Hcj为1356 k A·m-1,(BH)m为352 k J·m-3的无重稀土高矫顽力磁体。该磁体20~120℃的矫顽力温度系数β(Hcj)为-0.627%·℃-1,能够在120℃条件下使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号